Analytical Solution for Wave Scattering by a Surface Obstacle above a Muddy Seabed
Abstract
:1. Introduction
2. Solution Forms
2.1. Assumptions and Simplifications
2.2. Muddy Seabed
2.3. Water Layer
3. Dispersion Relations and Unknown Coefficients
3.1. Dispersion Relations
3.2. Unknown Coefficients
4. Numerical Examples
5. Concluding Remarks
Funding
Institutional Review Board Statement
Acknowledgments
Conflicts of Interest
References
- Takano, K. The effects of a rectangular obstacle on wave propagation. Houille Blanche 1960, 46, 247–267. [Google Scholar] [CrossRef]
- Newman, J.N. Propagation of water waves over an infinite step. J. Fluid Mech. 1965, 23, 399–418. [Google Scholar] [CrossRef]
- Miles, J.W. Surface-wave scattering matrix for a shelf. J. Fluid Mech. 1967, 28, 755–767. [Google Scholar] [CrossRef]
- Mei, C.C.; Black, J.L. Scattering of surface waves by rectangular obstacles in waters of finite depth. J. Fluid Mech. 1969, 38, 499–511. [Google Scholar] [CrossRef]
- Liu, P.L.-F.; Iskandarani, M. Hydrodynamic wave forces on submerged horizontal plates. In Proceedings of the 23rd IAHR World Congress, Ottawa, ON, Canada, 21–25 August 1989; pp. C51–C64. [Google Scholar]
- Kirby, J.T.; Dalrymple, R.A. Propagation of obliquely incident water waves over a trench. J. Fluid Mech. 1983, 133, 47–63. [Google Scholar] [CrossRef]
- Chwang, A.T.; Wu, J. Wave scattering by submerged porous disk. J. Eng. Mech. 1994, 120, 2575–2587. [Google Scholar] [CrossRef]
- McIver, M. Diffraction of water waves by a moored, horizontal, flat plate. J. Eng. Math. 1985, 19, 297–319. [Google Scholar] [CrossRef]
- Tabssum, S.; Kaligatla, R.B.; Sahoo, T. Surface gravity wave interaction with a partial porous breakwater in the presence of bottom undulation. J. Eng. Mech. 2020, 146, 04020088. [Google Scholar] [CrossRef]
- Bi, C.; Law, A.W.-K.; Wu, M.S. Dual poroviscoelastic wave barriers for compliant floating platforms. J. Eng. Mech. 2022, 148, 04022041. [Google Scholar] [CrossRef]
- Barman, S.C.; Das, S.; Sahoo, T.; Meylan, M.H. Scattering of flexural-gravity waves by a crack in a floating ice sheet due to mode conversion during blocking. J. Fluid Mech. 2021, 916, A11. [Google Scholar] [CrossRef]
- Gade, H.G. Effects of a non-rigid, impermeable bottom on plane surface waves in shallow water. J. Mar. Res. 1958, 16, 61–82. [Google Scholar]
- Soltanpour, M.; Haghshenas, S.A. Fluidization and representative wave transformation on muddy beds. Cont. Shelf Res. 2009, 29, 666–675. [Google Scholar] [CrossRef]
- Sheremet, A.; Jaramillo, S.; Su, S.-F.; Allison, M.A.; Holland, K.T. Wave-mud interaction over the muddy Atchafalaya subaqueous clinoform, Louisiana, United States: Wave processes. J. Geophys. Res. 2011, 116, C06005. [Google Scholar] [CrossRef]
- MacPherson, H. The attenuation of water waves over a non-rigid bed. J. Fluid Mech. 1980, 97, 721–742. [Google Scholar] [CrossRef]
- Dalrymple, R.A.; Liu, P.L.-F. Waves over soft muds: A two layer model. J. Phys. Oceanogr. 1978, 8, 1121–1131. [Google Scholar] [CrossRef]
- Ng, C.-O. Water waves over a muddy bed: A two-layer Stokes’ boundary layer model. Coast. Eng. 2000, 40, 221–242. [Google Scholar] [CrossRef]
- Liu, P.L.-F.; Chan, I.-C. A note on the effects of a thin visco-elastic mud layer on small amplitude water-wave propagation. Coast. Eng. 2007, 54, 233–247. [Google Scholar] [CrossRef]
- Mei, C.C.; Liu, K.-F. A Bingham-plastic model for a muddy seabed under long waves. J. Geophys. Res. 1987, 92, 14581–14594. [Google Scholar] [CrossRef]
- Yamamoto, T.; Koning, H.L.; Sellmeigher, H.; Hijum, E.V. On the response of poro-elastic bed to water waves. J. Fluid Mech. 1978, 87, 193–206. [Google Scholar] [CrossRef]
- Garnier, E.; Huang, Z.; Mei, C.C. Nonlinear long waves over a muddy beach. J. Fluid Mech. 2013, 718, 371–397. [Google Scholar] [CrossRef]
- Xia, Y.-Z. The attenuation of shallow-water waves over seabed mud of a stratified viscoelastic model. Coast. Eng. J. 2014, 56, 1450021. [Google Scholar] [CrossRef]
- Shamsnia, S.H.; Haghshenas, S.A.; Ghader, S.; Mahshid, K. An analytical model for mass transport calculations in a viscous muddy layer. Appl. Ocean Res. 2021, 115, 102816. [Google Scholar] [CrossRef]
- Rhodes-Robinson, P.F. On surface waves in the presence of immersed vertical boundaries II. Q. J. Mech. Appl. Math. 1979, 32, 109–124. [Google Scholar] [CrossRef]
- Sahoo, T.; Yip, T.L.; Chwang, A.T. Scattering of surface waves by a semi-infinite floating elastic plate. Phys. Fluids 2001, 13, 3215–3222. [Google Scholar] [CrossRef]
- Zheng, K.-Y.; National Taiwan University, Taipei, Taiwan; Chang, C.-W.; National Taiwan University, Taipei, Taiwan. Personal communication, 2021.
- Dean, R.G.; Dalrymple, R.A. Water Wave Mechanics for Engineers and Scientists; World Scientific: Singapore, 1991; pp. 172–178. [Google Scholar]
- Maa, J.P.-Y.; Mehta, A.J. Mud erosion by waves: A laboratory study. Cont. Shelf Res. 1987, 7, 1269–1284. [Google Scholar] [CrossRef]
- Zhou, X.-L.; Xu, B.; Wang, J.-H.; Li, Y.-L. An analytical solution for wave-induced seabed response in a multi-layered poro-elastic seabed. Ocean Eng. 2011, 38, 119–129. [Google Scholar] [CrossRef]
- Kumar, P.S.; Manam, S.R.; Sahoo, T. Wave scattering by flexible porous vertical membrane barrier in a two-layer fluid. J. Fluids Struct. 2007, 23, 633–647. [Google Scholar] [CrossRef]
- Behera, H.; Kaligatla, R.B.; Sahoo, T. Wave trapping by porous barrier in the presence of step type bottom. Wave Motion 2015, 57, 219–230. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chan, I.-C. Analytical Solution for Wave Scattering by a Surface Obstacle above a Muddy Seabed. Mathematics 2022, 10, 2838. https://doi.org/10.3390/math10162838
Chan I-C. Analytical Solution for Wave Scattering by a Surface Obstacle above a Muddy Seabed. Mathematics. 2022; 10(16):2838. https://doi.org/10.3390/math10162838
Chicago/Turabian StyleChan, I-Chi. 2022. "Analytical Solution for Wave Scattering by a Surface Obstacle above a Muddy Seabed" Mathematics 10, no. 16: 2838. https://doi.org/10.3390/math10162838
APA StyleChan, I. -C. (2022). Analytical Solution for Wave Scattering by a Surface Obstacle above a Muddy Seabed. Mathematics, 10(16), 2838. https://doi.org/10.3390/math10162838