The Casson Dusty Nanofluid: Significance of Darcy–Forchheimer Law, Magnetic Field, and Non-Fourier Heat Flux Model Subject to Stretch Surface
Abstract
:1. Introduction
2. Mathematical Formulation
3. Physical Quantities
4. Solution Procedure
5. Results and Discussion
6. Conclusions
- The impacts of porosity, Forchheimer and magnetic parameters on fluid flow show decreasing behavior for both fluid and dust phases.
- The temperature profile increases as porosity, Forchheimer and magnetic parameters are augmented, but the reverse behavior is viewed when the values of increase for both dust and fluid phase.
- Brownian diffusion enhanced the temperature profile and reduced the concentration profile.
- The current results were compared with the available results in the existing literature for the special case, and there was good agreement between them showing the validation of the present study.
- The growing strength of magnetic field (M), porosity (), and Casson fluid parameter () caused to decline in the skin friction and Nusselt number.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
Fluid velocity components along the x-axis | Fluid velocity components along the y-axis | ||
Density of fluid | Density of dust particles | ||
Kinematic viscosity of fluid | Casson parameter | ||
Electrical conductivity | Magnetic field strength | ||
Permeability of porous medium | F | Co-efficient of inertia of porous material | |
K | Stoke’s drag constant | N | Dust particle number constant |
m | Mass of dust particle | Thermal equilibrium time | |
Relaxation time for heat flux | Specific heat of dust particle | ||
T | non-dimensional temperature | Temperature at surface | |
C | non-dimensional nanoparticles concentration | Concentration at surface | |
Concentration of dust particles | Dynamic viscosity | ||
temperature away from the surface, K | Specific heat capacity of the fluid | ||
concentration away from the surface | angular velocity | ||
Temperature of the dust particle | velocity of stretching sheet | ||
skin friction at x-direction | Velocity components of dust particles | ||
Nusselt number | Sherwood number | ||
k | Thermal conductivity | Brownian motion parameter | |
thermophoresis parameter | Specific heat and constant pressure |
References
- Saffman, P. On the stability of laminar flow of a dusty gas. J. Fluid Mech. 1962, 13, 120–128. [Google Scholar] [CrossRef]
- Chakrabarti, K. Note on boundary layer in a dusty gas. AIAA J. 1974, 12, 1136–1137. [Google Scholar] [CrossRef]
- Datta, N.; Mishra, S. Boundary layer flow of a dusty fluid over a semi-infinite flat plate. Acta Mech. 1982, 42, 71–83. [Google Scholar] [CrossRef]
- Wei, Y.; Rehman, S.U.; Fatima, N.; Ali, B.; Ali, L.; Chung, J.D.; Shah, N.A. Significance of dust particles, nanoparticles radius, coriolis and lorentz forces: The case of maxwell dusty fluid. Nanomaterials 2022, 12, 1512. [Google Scholar] [CrossRef] [PubMed]
- Anwar, M.I.; Firdous, H.; Zubaidi, A.A.; Abbas, N.; Nadeem, S. Computational analysis of induced magnetohydrodynamic non-Newtonian nanofluid flow over nonlinear stretching sheet. Prog. React. Kinet. Mech. 2022, 47, 14686783211072712. [Google Scholar] [CrossRef]
- Kumar, D.; Sahu, A.K. Non-newtonian fluid flow over a rotating elliptic cylinder in laminar flow regime. Eur. J. Mech.-B/Fluids 2022, 93, 117–136. [Google Scholar] [CrossRef]
- Khashi’ie, N.S.; Waini, I.; Kasim, A.R.M.; Zainal, N.A.; Ishak, A.; Pop, I. Magnetohydrodynamic and viscous dissipation effects on radiative heat transfer of non-newtonian fluid flow past a nonlinearly shrinking sheet: Reiner–philippoff model. Alex. Eng. J. 2022, 61, 7605–7617. [Google Scholar] [CrossRef]
- Chaudhuri, S.; Chakraborty, P.; Das, M.; Das, B. Magnetohydrodynamic mixed convection in a non-Newtonian third-grade fluid flowing through vertical parallel plates: A semianalytical study of flow and heat transfer. Heat Transfer 2022, 51, 3373–3400. [Google Scholar] [CrossRef]
- Khan, S.U.; Al-Khaled, K.; Hussain, S.M.; Ghaffari, A.; Khan, M.I.; Ahmed, M.W. Implication of arrhenius activation energy and temperature-dependent viscosity on non-newtonian nanomaterial bio-convective flow with partial slip. Arab. J. Sci. Eng. 2022, 47, 7559–7570. [Google Scholar] [CrossRef]
- Riaz, A.; Awan, A.U.; Hussain, S.; Khan, S.U.; Abro, K.A. Effects of solid particles on fluid-particulate phase flow of non-newtonian fluid through eccentric annuli having thin peristaltic walls. J. Therm. Anal. Calorim. 2022, 147, 1645–1656. [Google Scholar] [CrossRef]
- Khan, M.I.; Alzahrani, F. Numerical simulation for the mixed convective flow of non-newtonian fluid with activation energy and entropy generation. Math. Methods Appl. Sci. 2021, 44, 7766–7777. [Google Scholar] [CrossRef]
- Reddy, M.G.; Rani, M.S.; Praveen, M.; Kumar, K.G. Comparative study of different non-newtonian fluid over an elaborated sheet in the view of dual stratified flow and ohmic heat. Chem. Phys. Lett. 2021, 784, 139096. [Google Scholar] [CrossRef]
- Fatunmbi, E.O.; Okoya, S.S. Quadratic mixed convection stagnation-point flow in hydromagnetic casson nanofluid over a nonlinear stretching sheet with variable thermal conductivity. In Defect and Diffusion Forum; Trans Tech Publ: Stafa-Zurich, Switzerland, 2021; Volume 409, pp. 95–109. [Google Scholar]
- Fatunmbi, E.; Okoya, S. Electromagnetohydrodynamic micropolar-casson fluid boundary layer flow and heat transfer over a stretching material featuring temperature-based thermophysical properties in a porous medium. J. Niger. Math. Soc. 2021, 40, 245–268. [Google Scholar]
- Sandhya, A.; Reddy, G.R.; Deekshitulu, G. Heat and mass transfer effects on MHD flow past an inclined porous plate in the presence of chemical reaction. Int. J. Appl. Mech. Eng. 2020, 25, 86–102. [Google Scholar] [CrossRef]
- Kumar, B.; Srinivas, S. Unsteady hydromagnetic flow of Eyring–Powell nanofluid over an inclined permeable stretching sheet with joule heating and thermal radiation. J. Appl. Comput. Mech. 2020, 6, 259–270. [Google Scholar]
- Hussain, F.; Abdal, S.; Abbas, Z.; Hussain, N.; Adnan, M.; Ali, B.; Zulqarnain, R.M.; Ali, L.; Younas, S. Buoyancy effect on MHD slip flow and heat transfer of a nanofluid flow over a vertical porous plate. Sci. Inq. Rev. 2020, 4, 1–16. [Google Scholar] [CrossRef]
- Rehman, S.U.; Mariam, A.; Ullah, A.; Asjad, M.I.; Bajuri, M.Y.; Pansera, B.A.; Ahmadian, A. Numerical computation of buoyancy and radiation effects on MHD micropolar nanofluid flow over a stretching/shrinking sheet with heat source. Case Stud. Therm. Eng. 2021, 25, 100867. [Google Scholar] [CrossRef]
- Hayat, T.; Riaz, R.; Aziz, A.; Alsaedi, A. Influence of arrhenius activation energy in MHD flow of third grade nanofluid over a nonlinear stretching surface with convective heat and mass conditions. Phys. A Stat. Mech. Its Appl. 2020, 549, 124006. [Google Scholar] [CrossRef]
- Kardri, M.A.; Bachok, N.; Arifin, N.M.; Ali, F.M.; Rahim, Y.F. Magnetohydrodynamic flow past a nonlinear stretching or shrinking cylinder in nanofluid with viscous dissipation and heat generation effect. J. Adv. Res. Fluid Mech. Therm. Sci. 2022, 90, 102–114. [Google Scholar] [CrossRef]
- Fetecau, C.; Shah, N.A.; Vieru, D. General solutions for hydromagnetic free convection flow over an infinite plate with newtonian heating, mass diffusion and chemical reaction. Commun. Theor. Phys. 2017, 68, 768. [Google Scholar] [CrossRef]
- Khan, M.I.; Hafeez, M.; Hayat, T.; Khan, M.I.; Alsaedi, A. Magneto rotating flow of hybrid nanofluid with entropy generation. Comput. Methods Programs Biomed. 2020, 183, 105093. [Google Scholar] [CrossRef] [PubMed]
- Shoaib, M.; Raja, M.A.Z.; Sabir, M.T.; Islam, S.; Shah, Z.; Kumam, P.; Alrabaiah, H. Numerical investigation for rotating flow of MHD hybrid nanofluid with thermal radiation over a stretching sheet. Sci. Rep. 2020, 10, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Hussain, T.; Xu, H.; Raees, A.; Zhao, Q.-K. Unsteady three-dimensional MHD flow and heat transfer in porous medium suspended with both microorganisms and nanoparticles due to rotating disks. J. Therm. Anal. Calorim. 2022, 147, 1607–1619. [Google Scholar] [CrossRef]
- Krishna, M.V.; Ahamad, N.A.; Chamkha, A.J. Numerical investigation on unsteady MHD convective rotating flow past an infinite vertical moving porous surface. Ain Shams Eng. J. 2021, 12, 2099–2109. [Google Scholar] [CrossRef]
- Jiang, Y.; Sun, H.; Bai, Y.; Zhang, Y. Mhd flow, radiation heat and mass transfer of fractional burgers’ fluid in porous medium with chemical reaction. Comput. Math. Appl. 2022, 115, 68–79. [Google Scholar] [CrossRef]
- Hossain, R.; Azad, A.; Hasan, M.J.; Rahman, M. Radiation effect on unsteady mhd mixed convection of kerosene oil-based cnt nanofluid using finite element analysis. Alex. Eng. J. 2022, 61, 8525–8543. [Google Scholar] [CrossRef]
- Ghasemi, S.; Hatami, M. Solar radiation effects on mhd stagnation point flow and heat transfer of a nanofluid over a stretching sheet. Case Stud. Therm. Eng. 2021, 25, 100898. [Google Scholar] [CrossRef]
- Mandal, D.K.; Biswas, N.; Manna, N.K.; Gorla, R.S.R.; Chamkha, A.J. Role of surface undulation during mixed bioconvective nanofluid flow in porous media in presence of oxytactic bacteria and magnetic fields. Int. J. Mech. Sci. 2021, 211, 106778. [Google Scholar] [CrossRef]
- Choi, S.U.; Eastman, J.A. Enhancing Thermal Conductivity of Fluids with Nanoparticles; Tech. Rep.; Argonne National Lab.: Lemont, IL, USA, 1995. [Google Scholar]
- Khan, M.; Malik, M.; Salahuddin, T.; Hussian, A. Heat and mass transfer of Williamson nanofluid flow yield by an inclined lorentz force over a nonlinear stretching sheet. Results Phys. 2018, 8, 862–868. [Google Scholar] [CrossRef]
- Saeed, A.; Kumam, P.; Nasir, S.; Gul, T.; Kumam, W. Non-linear convective flow of the thin film nanofluid over an inclined stretching surface. Sci. Rep. 2021, 11, 18410. [Google Scholar] [CrossRef]
- Yahya, A.U.; Salamat, N.; Huang, W.-H.; Siddique, I.; Abdal, S.; Hussain, S. Thermal charactristics for the flow of Williamson hybrid nanofluid (mos2+ zno) based with engine oil over a streched sheet. Case Stud. Therm. Eng. 2021, 26, 101196. [Google Scholar] [CrossRef]
- Gopal, D.; Saleem, S.; Jagadha, S.; Ahmad, F.; Almatroud, A.O.; Kishan, N. Numerical analysis of higher order chemical reaction on electrically mhd nanofluid under influence of viscous dissipation. Alex. Eng. J. 2021, 60, 1861–1871. [Google Scholar] [CrossRef]
- Gouran, S.; Mohsenian, S.; Ghasemi, S. Theoretical analysis on mhd nanofluid flow between two concentric cylinders using efficient computational techniques. Alex. Eng. J. 2022, 61, 3237–3248. [Google Scholar] [CrossRef]
- Rashidi, M.M.; Nazari, M.A.; Mahariq, I.; Assad, M.E.H.; Ali, M.E.; Almuzaiqer, R.; Nuhait, A.; Murshid, N. Thermophysical properties of hybrid nanofluids and the proposed models: An updated comprehensive study. Nanomaterials 2021, 11, 3084. [Google Scholar] [CrossRef]
- Aly, A.M.; Mohamed, E.M.; Alsedais, N. The magnetic field on a nanofluid flow within a finned cavity containing solid particles. Case Stud. Therm. Eng. 2021, 25, 100945. [Google Scholar] [CrossRef]
- Wang, F.; Rehman, S.; Bouslimi, J.; Khaliq, H.; Qureshi, M.I.; Kamran, M.; Alharbi, A.N.; Ahmad, H.; Farooq, A. Comparative study of heat and mass transfer of generalized mhd oldroyd-b bio-nano fluid in a permeable medium with ramped conditions. Sci. Rep. 2021, 11, 1–32. [Google Scholar] [CrossRef]
- Sheikholeslami, M.; Farshad, S.A.; Ebrahimpour, Z.; Said, Z. Recent progress on flat plate solar collectors and photovoltaic systems in the presence of nanofluid: A review. J. Clean. Prod. 2021, 293, 126119. [Google Scholar] [CrossRef]
- Jalil, M.; Asghar, S.; Yasmeen, S. An exact solution of MHD boundary layer flow of dusty fluid over a stretching surface. Math. Probl. Eng. 2017, 2017, 2307469. [Google Scholar] [CrossRef]
- Haider, S.M.A.; Ali, B.; Wang, Q.; Zhao, C. Stefan blowing impacts on unsteady mhd flow of nanofluid over a stretching sheet with electric field, thermal radiation and activation energy. Coatings 2021, 11, 1048. [Google Scholar] [CrossRef]
- Lou, Q.; Ali, B.; Rehman, S.U.; Habib, D.; Abdal, S.; Shah, N.A.; Chung, J.D. Micropolar dusty fluid: Coriolis force effects on dynamics of mhd rotating fluid when lorentz force is significant. Mathematics 2022, 10, 2630. [Google Scholar] [CrossRef]
- Ashraf, M.Z.; Rehman, S.U.; Farid, S.; Hussein, A.K.; Ali, B.; Shah, N.A.; Weera, W. Insight into significance of bioconvection on mhd tangent hyperbolic nanofluid flow of irregular thickness across a slender elastic surface. Mathematics 2022, 10, 2592. [Google Scholar] [CrossRef]
- Gireesha, B.; Ramesh, G.; Bagewadi, C. Heat transfer in MHD flow of a dusty fluid over a stretching sheet with viscous dissipation. Adv. Appl. Sci. Res. 2012, 3, 2392–2401. [Google Scholar]
M | Gireesha et al. [44] | Jalil et al. [40] | Our Results | Gireesha et al. [44] | Jalil et al. [40] | Our Results |
---|---|---|---|---|---|---|
0.2 | 1.0000 | 1.000000 | 1.0000 | 1.034 | 1.033505 | 1.0335 |
0.2 | 1.095 | 1.095445 | 1.0955 | 1.126 | 1.126114 | 1.1261 |
0.5 | 1.224 | 1.224745 | 1.2248 | 1.252 | 1.252251 | 1.2523 |
1.0 | 1.414 | 1.414214 | 1.4142 | 1.438 | 1.438101 | 1.4381 |
1.2 | 1.483 | 1.483240 | 1.4832 | 1.506 | 1.506032 | 1.5060 |
1.5 | 1.581 | 1.581139 | 1.5901 | 1.602 | 1.602540 | 1.6026 |
2.0 | 1.732 | 1.732051 | 1.8301 | 1.751 | 1.751609 | 1.7517 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rehman, S.U.; Fatima, N.; Ali, B.; Imran, M.; Ali, L.; Shah, N.A.; Chung, J.D. The Casson Dusty Nanofluid: Significance of Darcy–Forchheimer Law, Magnetic Field, and Non-Fourier Heat Flux Model Subject to Stretch Surface. Mathematics 2022, 10, 2877. https://doi.org/10.3390/math10162877
Rehman SU, Fatima N, Ali B, Imran M, Ali L, Shah NA, Chung JD. The Casson Dusty Nanofluid: Significance of Darcy–Forchheimer Law, Magnetic Field, and Non-Fourier Heat Flux Model Subject to Stretch Surface. Mathematics. 2022; 10(16):2877. https://doi.org/10.3390/math10162877
Chicago/Turabian StyleRehman, Saif Ur, Nageen Fatima, Bagh Ali, Muhammad Imran, Liaqat Ali, Nehad Ali Shah, and Jae Dong Chung. 2022. "The Casson Dusty Nanofluid: Significance of Darcy–Forchheimer Law, Magnetic Field, and Non-Fourier Heat Flux Model Subject to Stretch Surface" Mathematics 10, no. 16: 2877. https://doi.org/10.3390/math10162877
APA StyleRehman, S. U., Fatima, N., Ali, B., Imran, M., Ali, L., Shah, N. A., & Chung, J. D. (2022). The Casson Dusty Nanofluid: Significance of Darcy–Forchheimer Law, Magnetic Field, and Non-Fourier Heat Flux Model Subject to Stretch Surface. Mathematics, 10(16), 2877. https://doi.org/10.3390/math10162877