Bayesian Aerosol Retrieval-Based PM2.5 Estimation through Hierarchical Gaussian Process Models
Abstract
:1. Introduction
2. Datasets
3. Methods
3.1. Bayesian Aerosol Retrieval Algorithm
3.1.1. Establishing Forward Models
3.1.2. Retrieve AOD Using Bayesian Methods
- , where is the expected value vector of AOD, and is the covariance matrix of AOD. Following [16], the nearest value from the MAC-V2 climatology is taken as the prior expectation for each pixel to be retrieved. The MAC-V2 climatology is a tensor (denotes month, latitude, and longitude), and we use the nearest value to the pixel we retrieve as the prior expectation. We define the element of the prior covariance matrix of AOD as
- , where is the expected value vector of FMF, and is the covariance matrix of FMF. Similar to the AOD, the prior expectation value for FMF is also computed from the MAC-V2 climatology. The prior covariance matrix of FMF is the same as the covariance matrix of AOD, except for the values of those covariance matrix parameters. See Table 2 for the values of covariance matrix parameters used in the prior model for the FMF.
- , where and are the expected value vector and covariance matrix of land surface reflectance, respectively. We also use Gaussian prior models for the surface reflectances. We use the blue-sky albedos computed with the weighting coefficient of 0.5 ( of the white-sky albedo and of the black-sky albedo) in the MODIS MCD43C3 albedo product as the expected values for the surface reflectances. For the Bayesian aerosol retrieval algorithm, the monthly surface reflectance is computed as the temporal average of surface reflectances ±45 days around the middle day of the month. The expected values for the surface reflectances in the retrieval are computed as an average of the three closest pixels in the monthly surface reflectance. Both the temporal variance in the original surface albedo product and the variance due to averaging are taken into account in the construction of the surface reflectance variance.
3.1.3. Combine AOD Retrievals with MAIAC AOD Products
3.2. Hierarchical Gaussian Process Model
- follows the inverse gamma distribution with shape parameter 2 and scale parameter 2.
- follows the uniform distribution .
- follows the inverse gamma distribution with shape parameter 2 and scale parameter 0.1.
4. Results and Discussion
4.1. Evaluation of the Model Performance
4.2. Spatial and Seasonal Variations of Concentrations in Shanghai
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AOD | Aerosol Optical Depth |
FMF | Fine Mode Fraction |
MODIS | Moderate Resolution Imaging Spectroradiomete |
MAIMC | Multi-Angle Implementation of Atmospheric Correction |
CV | Cross Validation |
Particulate matter with an aerodynamic diameter less than 2.5 μm |
References
- Yan, X.D.; Wang, Q.M.; Tie, C.; Jin, H.T.; Han, Y.X.; Zhang, J.L.; Yu, X.M.; Hou, Q.; Zhang, P.P.; Wang, A.P. Polydatin protects the respiratory system from PM2.5 exposure. Sci. Rep. 2017, 7, 40030. [Google Scholar] [CrossRef] [PubMed]
- Brook, R.D.; Rajagopalan, S.; Pope, C.A., III; Brook, J.R.; Bhatnagar, A.; Diez-Roux, A.V.; Holguin, F.; Hong, Y.; Luepker, R.V.; Mittleman, M.A. Particulate matter air pollution and cardiovascular disease: An update to the scientific statement from the American Heart Association. Circulation 2010, 121, 2331–2378. [Google Scholar] [CrossRef] [PubMed]
- Hayes, R.B.; Lim, C.; Zhang, Y.; Cromar, K.; Shao, Y.; Reynolds, H.R.; Silverman, D.T.; Jones, R.R.; Park, Y.; Jerrett, M. PM2.5 air pollution and cause-specific cardiovascular disease mortality. Int. J. Epidemiol. 2020, 49, 25–35. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.Z.; Ge, D.D.; Zhou, L.F.; Hou, L.Y.; Zhou, Y.; Li, Q.Y. Effects of particulate matter on allergic respiratory diseases. Chronic Dis. Transl. Med. 2018, 4, 95–102. [Google Scholar] [CrossRef] [PubMed]
- Dominici, F.; Peng, R.D.; Bell, M.L.; Pham, L.; McDermott, A.; Zeger, S.L.; Samet, J.M. Fine particulate air pollution and hospital admission for cardiovascular and respiratory diseases. JAMA 2006, 295, 1127–1134. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Y.; Liu, S.; Castro, R.; Pan, X. PM2.5 monitoring and mitigation in the cities of China. Environ. Sci. Technol. 2012, 46, 3627–3628. [Google Scholar] [CrossRef] [PubMed]
- Song, W.; Jia, H.; Huang, J.; Zhang, Y. A satellite-based geographically weighted regression model for regional PM2.5 estimation over the Pearl River Delta region in China. Remote Sens. Environ. 2014, 154, 1–7. [Google Scholar] [CrossRef]
- Ma, Z.; Liu, Y.; Zhao, Q.; Liu, M.; Zhou, Y.; Bi, J. Satellite-derived high resolution PM2.5 concentrations in Yangtze River Delta Region of China using improved linear mixed effects model. Atmos. Environ. 2016, 133, 156–164. [Google Scholar] [CrossRef]
- Yu, W.; Liu, Y.; Ma, Z.; Bi, J. Improving satellite-based PM 2.5 estimates in China using Gaussian processes modeling in a Bayesian hierarchical setting. Sci. Rep. 2017, 7, 7048. [Google Scholar] [CrossRef] [PubMed]
- Lipponen, A.; Mielonen, T.; Pitkänen, M.R.; Levy, R.C.; Sawyer, V.R.; Romakkaniemi, S.; Kolehmainen, V.; Arola, A. Bayesian aerosol retrieval algorithm for MODIS AOD retrieval over land. Atmos. Meas. Tech. 2018, 11, 1529–1547. [Google Scholar] [CrossRef]
- Wang, Y.; Jiang, X.; Yu, B.; Jiang, M. A hierarchical Bayesian approach for aerosol retrieval using MISR data. J. Am. Stat. Assoc. 2013, 108, 483–493. [Google Scholar] [CrossRef]
- Lyapustin, A.; Wang, Y.; Korkin, S.; Huang, D. MODIS collection 6 MAIAC algorithm. Atmos. Meas. Tech. 2018, 11, 5741–5765. [Google Scholar] [CrossRef]
- Wei, J.; Huang, W.; Li, Z.; Xue, W.; Peng, Y.; Sun, L.; Cribb, M. Estimating 1-km-resolution PM2.5 concentrations across China using the space-time random forest approach. Remote Sens. Environ. 2019, 231, 111221. [Google Scholar] [CrossRef]
- Kaufman, Y.; Tanré, D.; Remer, L.A.; Vermote, E.; Chu, A.; Holben, B. Operational remote sensing of tropospheric aerosol over land from EOS moderate resolution imaging spectroradiometer. J. Geophys. Res. Atmos. 1997, 102, 17051–17067. [Google Scholar] [CrossRef]
- Levy, R.; Mattoo, S.; Munchak, L.; Remer, L.; Sayer, A.; Patadia, F.; Hsu, N. The Collection 6 MODIS aerosol products over land and ocean. Atmos. Meas. Tech. 2013, 6, 2989–3034. [Google Scholar] [CrossRef]
- Kinne, S.; O’Donnel, D.; Stier, P.; Kloster, S.; Zhang, K.; Schmidt, H.; Rast, S.; Giorgetta, M.; Eck, T.F.; Stevens, B. MAC-v1: A new global aerosol climatology for climate studies. J. Adv. Model. Earth Syst. 2013, 5, 704–740. [Google Scholar] [CrossRef]
- Byrd, R.H.; Lu, P.; Nocedal, J.; Zhu, C. A limited memory algorithm for bound constrained optimization. SIAM J. Sci. Comput. 1995, 16, 1190–1208. [Google Scholar] [CrossRef]
- Williams, C.K.; Rasmussen, C.E. Gaussian Processes for Machine Learning; MIT Press: Cambridge, MA, USA, 2006; Volume 2. [Google Scholar]
- Finley, A.O.; Banerjee, S.; Carlin, B.P. spBayes: An R package for univariate and multivariate hierarchical point-referenced spatial models. J. Stat. Softw. 2007, 19, 1–24. [Google Scholar] [CrossRef] [PubMed]
- Finley, A.O.; Banerjee, S.; Gelfand, A.E. spBayes for large univariate and multivariate point-referenced spatio-temporal data models. J. Stat. Softw. 2015, 63, 1–28. [Google Scholar] [CrossRef]
- Bakar, K.S.; Kokic, P. Bayesian Gaussian models for point referenced spatial and spatio-temporal data. J. Stat. Res. 2017, 51, 17–40. [Google Scholar] [CrossRef]
- Brenning, A. Spatial cross-validation and bootstrap for the assessment of prediction rules in remote sensing: The R package sperrorest. In Proceedings of the 2012 IEEE International Geoscience and Remote Sensing Symposium, Munich, Germany, 22–27 July 2012; pp. 5372–5375. [Google Scholar] [CrossRef]
- Roberts, D.R.; Bahn, V.; Ciuti, S.; Boyce, M.S.; Elith, J.; Guillera-Arroita, G.; Hauenstein, S.; Lahoz-Monfort, J.J.; Schröder, B.; Thuiller, W. Cross-validation strategies for data with temporal, spatial, hierarchical, or phylogenetic structure. Ecography 2017, 40, 913–929. [Google Scholar] [CrossRef]
- Valavi, R.; Elith, J.; Lahoz-Monfort, J.J.; Guillera-Arroita, G. block CV: An r package for generating spatially or environmentally separated folds for k-fold cross-validation of species distribution models. Methods Ecol. Evol. 2019, 10, 225–232. [Google Scholar] [CrossRef]
- Ploton, P.; Mortier, F.; Réjou-Méchain, M.; Barbier, N.; Picard, N.; Rossi, V.; Dormann, C.; Cornu, G.; Viennois, G.; Bayol, N. Spatial validation reveals poor predictive performance of large-scale ecological mapping models. Nat. Commun. 2020, 11, 4540. [Google Scholar] [CrossRef] [PubMed]
- Brenning, A. Spatial machine-learning model diagnostics: A model-agnostic distance-based approach. arXiv 2021, arXiv:2111.08478. [Google Scholar]
- Ren, M.; Zhang, Q.; Zhang, J. An introductory survey of probability density function control. Syst. Sci. Control Eng. 2019, 7, 158–170. [Google Scholar] [CrossRef]
Variables | Input Parameters |
---|---|
AOD | From 0 to 6, step 1 |
Wavelength | 0.466, 0.554, 0.645, 2.113 |
Aerosol type | 0, 1, 2, 3, 4 |
Solar zenith angle | From 0 to 84, step 12 |
View zenith angle | From 0 to 84, step 12 |
Relative azimuth angle | From 0 to 180, step 12 |
Topographic altitude | From −0.2 to 9, step 0.1 |
Parameter | AOD | FMF |
---|---|---|
50 km | 50 km | |
0.0025 | 0.01 | |
0.10 | 0.25 | |
p | 1.5 | 1.5 |
Average | Minimum | Maximum | |
---|---|---|---|
Spring | 34.16 μg/m | 16.53 μg/m | 68.90 μg/m |
Summer | 18.69 μg/m | 8.07 μg/m | 38.20 μg/m |
Autumn | 25.10 μg/m | 10.86 μg/m | 55.57 μg/m |
Winter | 39.19 μg/m | 17.28 μg/m | 82.15 μg/m |
Whole year | 29.62 μg/m | 10.86 μg/m | 74.41 μg/m |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Li, D.; Xia, Y.; Liao, Q. Bayesian Aerosol Retrieval-Based PM2.5 Estimation through Hierarchical Gaussian Process Models. Mathematics 2022, 10, 2878. https://doi.org/10.3390/math10162878
Zhang J, Li D, Xia Y, Liao Q. Bayesian Aerosol Retrieval-Based PM2.5 Estimation through Hierarchical Gaussian Process Models. Mathematics. 2022; 10(16):2878. https://doi.org/10.3390/math10162878
Chicago/Turabian StyleZhang, Junbo, Daoji Li, Yingzhi Xia, and Qifeng Liao. 2022. "Bayesian Aerosol Retrieval-Based PM2.5 Estimation through Hierarchical Gaussian Process Models" Mathematics 10, no. 16: 2878. https://doi.org/10.3390/math10162878
APA StyleZhang, J., Li, D., Xia, Y., & Liao, Q. (2022). Bayesian Aerosol Retrieval-Based PM2.5 Estimation through Hierarchical Gaussian Process Models. Mathematics, 10(16), 2878. https://doi.org/10.3390/math10162878