A Model of Optimal Production Planning Based on the Hysteretic Demand Curve
Abstract
:1. Introduction
1.1. Purpose/Background
1.2. Method
1.3. Results and Conclusions
2. Non-Ideal Relay
3. Modeling the Demand Curve
4. A Production Model
5. Results
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Blanchard, O.; Wolfers, J. The roles of shocks and institutions in the rise of European unemployment: The aggregate evidence. Econ. J. 2000, 110, C1–C33. [Google Scholar] [CrossRef]
- Cross, R.; McNamara, H.; Pokrovskii, A.V.; Rachinskii, D. A new paradigm for modeling hysteresis in macroeconomic flows. Phys. B Condens. Matter 2008, 403, 231–236. [Google Scholar] [CrossRef]
- Darby, J.; Cross, R.; Piscitelli, L. Hysteresis and unemployment: A preliminary investigation. In The Science of Hysteresis; Bertotti, G., Mayergoyz, I.D., Eds.; Academic Press: Oxford, UK, 2006; Volume 1, pp. 667–699. [Google Scholar] [CrossRef]
- Rios, L.; Rachinskii, D.; Cross, R. A model of hysteresis arising from social interaction within a firm. J. Phys. Conf. Ser. 2017, 811, 012011. [Google Scholar] [CrossRef]
- Rios, L.; Rachinskii, D.; Cross, R. On the rationale for hysteresis in economic decisions. J. Phys. Conf. Ser. 2017, 811, 012012. [Google Scholar] [CrossRef]
- Borzunov, S.V.; Semenov, M.E.; Sel’vesyuk, N.I.; Meleshenko, P.A.; Solovyov, A.M. Stochastic model of the hysteresis converter with a domain structure. Math. Models Comput. Simul. 2022, 14, 305–321. [Google Scholar] [CrossRef]
- Cross, R. Unemployment: Natural rate epicycles or hysteresis? Eur. J. Econ. Econ. Policies Interv. 2014, 11, 136–148. [Google Scholar] [CrossRef]
- Lamba, H.; Krejčí, P.; Rachinskii, D. The global stability of a class of history-dependent macroeconomic models. Math. Model. Nat. Phenom. 2020, 15, 1–24. [Google Scholar] [CrossRef]
- Carboni, B.; Lacarbonara, W.; Brewick, P.T.; Masri, S.F. Dynamical response identification of a class of nonlinear hysteretic systems. J. Intell. Mater. Syst. Struct. 2018, 29, 2795–2810. [Google Scholar] [CrossRef]
- Lacarbonara, W.; Vestroni, F. Nonclassical Responses of Oscillators with Hysteresis. Nonlinear Dyn. 2003, 32, 235–258. [Google Scholar] [CrossRef]
- Li, Y.; Zhou, S.; Litak, G. Robust design optimization of a nonlinear monostable energy harvester with uncertainties. Meccanica 2020, 55, 1753–1762. [Google Scholar] [CrossRef]
- Medvedskii, A.L.; Meleshenko, P.A.; Nesterov, V.A.; Reshetova, O.O.; Semenov, M.E.; Solovyov, A.M. Unstable Oscillating Systems with Hysteresis: Problems of Stabilization and Control. J. Comput. Syst. Sci. Int. 2020, 59, 533–556. [Google Scholar] [CrossRef]
- Pei, J.S.; Carboni, B.; Lacarbonara, W. Mem-models as building blocks for simulation and identification of hysteretic systems. Nonlinear Dyn. 2020, 100, 973–998. [Google Scholar] [CrossRef]
- Semenov, M.E.; Solovyov, A.M.; Meleshenko, P.A.; Reshetova, O.O. Efficiency of hysteretic damper in oscillating systems. Math. Model. Nat. Phenom. 2020, 15, 43. [Google Scholar] [CrossRef]
- Bagagiolo, F. Dynamic programming for some optimal control problems with hysteresis. Nonlinear Differ. Equ. Appl. 2002, 9, 149–174. [Google Scholar] [CrossRef]
- Bagagiolo, F. Viscosity solutions for an optimal control problem with Preisach hysteresis nonlinearities. ESAIM Control Optim. Calc. Var. 2004, 10, 271–294. [Google Scholar] [CrossRef]
- Belbas, S.A.; Mayergoyz, I.D. Dynamic programming for systems with hysteresis. Phys. B 2001, 306, 200–205. [Google Scholar] [CrossRef]
- Belbas, S.A.; Mayergoyz, I.D. Optimal control of dynamical systems with Preisach hysteresis. Int. J. -Non-Linear Mech. 2002, 37, 1351–1361. [Google Scholar] [CrossRef]
- Gavioli, C.; Krejčí, P. Control and Controllability of PDEs with Hysteresis. Appl. Math. Optim. 2021, 84, 829–847. [Google Scholar] [CrossRef]
- Brokate, M.; Friedman, A. Optimal Design for Heat Conduction Problems with Hysteresis. SIAM J. Control Optim. 1989, 27, 697–717. [Google Scholar] [CrossRef]
- Chen, B.; Timoshin, S.A. Optimal control of a population dynamics model with hysteresis. Acta Math. Sci. 2022, 42B, 283–298. [Google Scholar] [CrossRef]
- Münch, C. Optimal control of reaction-diffusion systems with hysteresis. ESAIM Control Optim. Calc. Var. 2018, 24, 1453–1488. [Google Scholar] [CrossRef]
- Brokate, M.; Krejčí, P. Optimal control of ODE systems involving a rate independent variational inequality. Discret. Contin. Dyn. Syst. Ser. B 2013, 18, 331–348. [Google Scholar] [CrossRef]
- Lu, Q.; Gang, T.; Hao, G.; Chen, L. Compound optimal control of harmonic drive considering hysteresis characteristic. Mech. Sci. 2019, 10, 383–391. [Google Scholar] [CrossRef]
- Belhaq, M.; Kirrou, I.; Mokni, L. Periodic and quasiperiodic galloping of a wind-excited tower under external excitation. Nonlinear Dyn. 2013, 74, 849–867. [Google Scholar] [CrossRef]
- Ding, B.; Li, Y. Hysteresis Compensation and Sliding Mode Control with Perturbation Estimation for Piezoelectric Actuators. Micromachines 2018, 9, 241. [Google Scholar] [CrossRef]
- Zhang, J.; Merced, E.; Sepúlveda, N.; Tan, X. Optimal compression of generalized Prandtl–Ishlinskii hysteresis models. Automatica 2015, 57, 170–179. [Google Scholar] [CrossRef]
- Tan, X.; Baras, J.S. Optimal Control of Hysteresis in Smart Actuators: A Viscosity Solutions Approach. In Proceedings of the International Workshop on Hybrid Systems: Computation and Control (HSCC 2002), Stanford, CA, USA, 25–27 March 2002; Lecture Notes in Computer Science; Tomlin, C.J., Greenstreet, M.R., Eds.; Springer: Berlin/Heidelberg, Germany, 2002; Volume 2289, pp. 451–464. [Google Scholar] [CrossRef]
- Tan, X.; Baras, J.S.; Krishnaprasad, P.S. Control of hysteresis in smart actuators with application to micro-positioning. Syst. Control Lett. 2005, 54, 483–492. [Google Scholar] [CrossRef]
- Yang, L.; Ding, B.; Liao, W.; Li, Y. Identification of Preisach Model Parameters Based on an Improved Particle Swarm Optimization Method for Piezoelectric Actuators in Micro-Manufacturing Stages. Micromachines 2022, 13, 698. [Google Scholar] [CrossRef]
- Mayergoyz, I.D. Mathematical Models of Hysteresis. Phys. Rev. Lett. 1986, 56, 1518–1521. [Google Scholar] [CrossRef]
- Mayergoyz, I.; Dimian, M. Analysis of spectral noise density of hysteretic systems driven by stochastic processes. J. Appl. Phys. 2003, 93, 6826–6828. [Google Scholar] [CrossRef]
- Semenov, M.E.; Borzunov, S.V.; Meleshenko, P.A. Stochastic Preisach operator: Definition within the design approach. Nonlinear Dyn. 2020, 101, 2599–2614. [Google Scholar] [CrossRef]
- Borzunov, S.V.; Semenov, M.E.; Sel’vesyuk, N.I.; Meleshenko, P.A. Hysteretic Converters with Stochastic Parameters. Math. Models Comput. Simul. 2020, 12, 164–175. [Google Scholar] [CrossRef]
- Deng, Z.; Zhong, S. A digital image encryption algorithm based on chaotic mapping. J. Algorithm Comput. Technol. 2019, 13, 1–11. [Google Scholar] [CrossRef]
- Man, Z.; Li, J.; Di, X.; Sheng, Y.; Liu, Z. Double image encryption algorithm based on neural network and chaos. Chaos Solitons Fractals 2021, 152, 111318. [Google Scholar] [CrossRef]
- Wang, X.; Yang, J.; Guan, N. High-sensitivity image encryption algorithm with random cross diffusion based on dynamically random coupled map lattice model. Chaos Solitons Fractals 2021, 143, 110582. [Google Scholar] [CrossRef]
- Chaudhary, N.; Shahi, T.B.; Neupane, A. Secure Image Encryption Using Chaotic, Hybrid Chaotic and Block Cipher Approach. J. Imaging 2022, 8, 167. [Google Scholar] [CrossRef]
- Meleshenko, P.A.; Semenov, M.E.; Klinskikh, A.F. Conservative chaos in a simple oscillatory system with non-smooth nonlinearity. Nonlinear Dyn. 2020, 101, 2523–2540. [Google Scholar] [CrossRef]
- Luo, X.; Liu, Z.; Wu, J. Dynamic Pricing and Optimal Control for a Stochastic Inventory System with Non-Instantaneous Deteriorating Items and Partial Backlogging. Mathematics 2020, 8, 906. [Google Scholar] [CrossRef]
- Dikariev, I.; Angulo, F.; Angulo-Garcia, D. Single-Switching Reachable Operation Points in a DC-DC Buck Converter: An Approximation from Time Optimal Control. Micromachines 2020, 11, 834. [Google Scholar] [CrossRef]
- Udrişte, C.; Ţevy, I. Minirobots Moving at Different Partial Speeds. Mathematics 2020, 8, 1036. [Google Scholar] [CrossRef]
- Yuan, Z.; Teng, L.; Fengchun, S.; Peng, H. Comparative Study of Dynamic Programming and Pontryagin’s Minimum Principle on Energy Management for a Parallel Hybrid Electric Vehicle. Energies 2013, 6, 2305–2318. [Google Scholar] [CrossRef]
- Persio, L.D.; Garbelli, M. Deep Learning and Mean-Field Games: A Stochastic Optimal Control Perspective. Symmetry 2021, 13, 14. [Google Scholar] [CrossRef]
- Pontryagin, L.S.; Boltyanskii, V.G.; Gamkrelidze, R.V.; Mishechenko, E.F. The Mathematical Theory of Optimal Processes; Neustadt, L.W., Ed.; Wiley: New York, NY, USA, 1962; pp. 9–73. [Google Scholar]
- Krasnosel’skii, M.A.; Pokrovskii, A.V. Systems with Hysteresis; Springer: Berlin/Heidelberg, Germany, 1989; p. 410. [Google Scholar] [CrossRef]
- Mayergoyz, I.D. The Classical Preisach Model of Hysteresis. In Mathematical Models of Hysteresis; Springer: New York, NY, USA, 1991; pp. 1–63. [Google Scholar] [CrossRef]
- Lee, E.B.; Markus, L. Foundations of Optimal Control Theory; Wiley: Malabar, FL, USA, 1986; pp. 239–307. [Google Scholar]
- Arnold, V.I. Ordinary Differential Equations; Springer: Berlin/Heidelberg, Germany, 1992; pp. 89–103. [Google Scholar]
- Fedoryuk, M.V. Asymptotic Analysis: Linear Ordinary Differential Equations; Springer: Berlin/Heidelberg, Germany, 1993; pp. 1–23. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Semenov, M.E.; Borzunov, S.V.; Meleshenko, P.A.; Lapin, A.V. A Model of Optimal Production Planning Based on the Hysteretic Demand Curve. Mathematics 2022, 10, 3262. https://doi.org/10.3390/math10183262
Semenov ME, Borzunov SV, Meleshenko PA, Lapin AV. A Model of Optimal Production Planning Based on the Hysteretic Demand Curve. Mathematics. 2022; 10(18):3262. https://doi.org/10.3390/math10183262
Chicago/Turabian StyleSemenov, Mikhail E., Sergei V. Borzunov, Peter A. Meleshenko, and Alexey V. Lapin. 2022. "A Model of Optimal Production Planning Based on the Hysteretic Demand Curve" Mathematics 10, no. 18: 3262. https://doi.org/10.3390/math10183262
APA StyleSemenov, M. E., Borzunov, S. V., Meleshenko, P. A., & Lapin, A. V. (2022). A Model of Optimal Production Planning Based on the Hysteretic Demand Curve. Mathematics, 10(18), 3262. https://doi.org/10.3390/math10183262