Advanced Analytic Self-Similar Solutions of Regular and Irregular Diffusion Equations
Abstract
:1. Introduction
2. Theory and Results
2.1. Self-Similar Ansatz
- where the derived solutions are divergent for large s, such solutions are nonphysical and out of the scope of our present analysis
- the solution is zero in the origin and has an asymptotic positive finite value at asymptotic large
- the solution is zero in the origin has a local maxima and a decay to zero as goes to infinity
- the solutions are again zero in the origin then have a local maxima and a quick oscillatory decay to zero, larger values mean more oscillations with more and more zero transitions.
2.2. An Interesting Ansatz
2.3. A Generalization
2.4. A Redefinition of Variables
2.5. Using Various Series Expansions of
2.6. Arbitrary Self-Similar Exponents
- When , the functions have zero transitions and show oscillatory behavior.
- When , Kummer’s functions are equal to unity; hence, the solution is purely Gaussian, with the quickest possible decay to zero.
- When , the larger the beta the lower the global maximum and the slower the decay at large argument. The numerical value of is irrelevant if it is positive. It is interesting that for negative s and for positive s the total solution is again divergent at large arguments. For completeness, we show the for and on Figure 5b.
3. Summary and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Mátyás, L.; Barna, I.F. General Self-Similar Solutions of Diffusion Equation and Related Constructions. Rom. J. Phys. 2022, 67, 101–120. [Google Scholar]
- Ghez, R. Diffusion Phenomena; Dover Publication Inc.: Long Island, NY, USA, 2001. [Google Scholar]
- Newman, J.; Battaglia, V. The Newman Lectures on Transport Phenomena; Jenny Stanford Publishing: Singapore, 2021. [Google Scholar]
- Gillespie, D.T.; Seitaridou, E. Simple Brownian Diffusion; Oxford University Press: Oxford, UK, 2013. [Google Scholar]
- Bálint, P.; Gilbert, T.; Szasz, D.; Tóth, I. What mathematical billiards teach us about statistical physics? arXiv 2020, arXiv:2009.06284. [Google Scholar]
- Deng, W.; Hou, R.; Wang, W.; Xu, P. Modeling Anomalous Diffusion, From Statistics to Mathematics; World Scientific: Singapore, 2020. [Google Scholar]
- Uchaikin, V.V. Self-similar anomalous diffusion and Levy-stable laws. Phys. Uspekhi 2003, 46, 821–849. [Google Scholar] [CrossRef]
- Arapostathis, A.; Borkar, V.S.; Ghosh, M.K. Ergodic Control of Diffusion Processes; Cambridge University Press: Cambridge, UK, 2012. [Google Scholar]
- Divinski, S.V.; Aloke, P. Handbook of Solid State Diffusion; Elsevier: Amsterdam, The Netherlands, 2017. [Google Scholar]
- Dybkov, V.I. Reaction Diffusion and Solid State Chemical Kinetics; The IPMS Publications: Kyev, Ukraine, 2002. [Google Scholar]
- Shewmon, P. Diffusion in Solids; Springer: New York, NY, USA, 2016. [Google Scholar]
- Öchsner, A.; Murch, G.E.; Belova, I.E. Advanced Diffusion Processes and Phenomena; Trans Tech Publication: Stafa-Zurich, Switzerland, 2014. [Google Scholar]
- Martin, G. Atomic mobility in Cahn’s diffusion model. Phys. Rev. B 1990, 41, 2279–2283. [Google Scholar] [CrossRef]
- Beke, D.L.; Erdélyi, Z. Resolution of the diffusional paradox predicting infinitely fast kinetics on the nanoscale. Phys. Rev. B 2006, 73, 035426. [Google Scholar] [CrossRef]
- Balogh, Z.; Erdélyi, Z.; Beke, D.L.; Langer, G.A.; Csik, A.; Boyen, H.G.; Wiedwald, U.; Ziemann, P.; Portavoce, A.; Girardeaux, C. Transition from anomalous kinetics toward Fickian diffusion for Si dissolution into amorphous Ge. Appl. Phys. Lett. 2008, 92, 143104. [Google Scholar] [CrossRef]
- Fisher, D.J. Defects and Diffusion in Carbon Nanotubes; Defect and Diffusion Forum, Trans Tech Publication: Stafa-Zurich, Switzerland, 2014. [Google Scholar]
- Pelleg, J. Diffusion in Ceramics; Solid Mechanics and Its Applications; Springer: New York, NY, USA, 2016. [Google Scholar]
- Michaud, G.; Alecian, G.; Richer, J. Atomic Diffusion in Stars; Astronomy and Astrophysics Library; Springer: New York, NY, USA, 2015. [Google Scholar]
- Liehr, A.W. Dissipative Solitons in Reaction Diffusion Systems Volume. In Springer Series in Synergetics; Springer: New York, NY, USA, 2013; Volume 70. [Google Scholar]
- Vazquez, J.L. The Porous Medium Equation, Mathematical Theory; Oxford University Press: Oxford, UK, 2007. [Google Scholar]
- Galea, E.; Markatos, N. A review of mathematical modelling of aircraft cabin fires. Appl. Math. Model. 1987, 11, 162–176. [Google Scholar] [CrossRef]
- Díaz, J.L. Modeling of an aircraft fire extinguishing process with a porous medium equation. SN Appl. Sci. 2020, 2, 2108. [Google Scholar] [CrossRef]
- Iron, D.; Wei, J.; Winter, M. Stability analysis of Turing patterns generated by the Schnakenberg model. J. Math. Biol. 2004, 49, 358–390. [Google Scholar] [CrossRef]
- Golovin, A.A.; Matkowsky, B.J.; Volpert, V.A. Turing Pattern Formation in the Brusselator Model with Superdiffusion. SIAM J. Appl. Math. 2008, 69, 251–272. [Google Scholar] [CrossRef]
- Barna, I.F.; Bognár, G.; Guedda, M.; Hriczó, K.; Mátyás, L. Analytic Self-Similar Solutions of the Kardar–Parisi–Zhang Interface Growing Equation with Various Noise Terms. Math. Model. Anal. 2020, 25, 241–256. [Google Scholar] [CrossRef]
- Barna, I.F.; Bognár, G.; Mátyás, L.; Guedda, M.; Hriczó, K. Travelling-wave solutions of the Kardar–Parisi–Zhang interface growing equation with different kind of noise terms. AIP Conf. Proc. 2020, 2293, 280005. [Google Scholar] [CrossRef]
- Klages, R.; Barna, I.F.; Mátyás, L. Spiral modes in the diffusion of a granular particle on a vibrating surface. Phys. Lett. A 2004, 333. [Google Scholar] [CrossRef]
- Mátyás, L.; Barna, I.F. Geometrical origin of chaoticity in the bouncing ball billiard. Chaos Solitons Fractals 2010, 44, 1111–1116. [Google Scholar] [CrossRef]
- Crank, J. The Mathematics of Diffusion; Oxford Clarendon Press: Oxford, UK, 1975. [Google Scholar]
- Benett, T. Transport by Advection and Diffusion: Momentum, Heat and Mass Transfer; John Wiley & Sons: Hoboken, NJ, USA, 2013. [Google Scholar]
- Clarkson, P.A.; Kruskal, M.D. New similarity reductions of the Boussinesq equation. J. Math. Phys. 1989, 30, 2201–2213. [Google Scholar] [CrossRef]
- Benhamidouche, N. Exact solutions to some nonlinear PDEs, travelling profiles method. Electron. J. Qual. Theory Differ. Equ. 2008, 2008, 1–7. [Google Scholar] [CrossRef]
- Sedov, L.I. Similarity and Dimensional Methods in Mechanics; Academic Press: Boca Raton, FL, USA, 1959. [Google Scholar]
- Kolmogorov, A.N.; Petrovskii, I.G.; Piskunov, N.S. Selected Works of A. N. Kolmogorov; Kluver Academic Publisher: Norwell, Australia, 1991. [Google Scholar]
- Fisher, R.A. The wave of advance of advantageous genes. Ann. Eugen. 1937, 7, 353–369. [Google Scholar] [CrossRef]
- Al-Khaled, K. Numerical study of Fisher’s reaction—Diffusion equation by the Sinc collocation method. J. Comput. Appl. Math. 2001, 137, 245–255. [Google Scholar] [CrossRef]
- Tálos, K.; Páger, C.; Tonk, S.; Majdik, C.; Kocsis, B.; Kilár, F.; Pernyeszi, T. Cadmium biosorption on native Saccharomyces cerevisiae cells in aqueous suspension. Acta Univ. Sapientiae Agric. Environ. 2009, 1, 20–30. [Google Scholar]
- Newell, A.C.; Whitehead, J.A. Finite bandwidth, finite amplitude convection. J. Fluid Mech. 1969, 38, 279–303. [Google Scholar] [CrossRef]
- Segel, L.A. Distant side-walls cause slow amplitude modulation of cellular convection. J. Fluid Mech. 1969, 38, 203–224. [Google Scholar] [CrossRef]
- Zeldovich, Y.B.; Frank–Kamenetskii, D.A. Distant side-walls cause slow amplitude modulation of cellular convection. Acta Physicochim. 1938, 9, 341. [Google Scholar]
- Gliding, B.H.; Kersner, R. Traveling Waves in Nonlinear Diffusion-Convection-Reaction; Progress in Nonlinear Differential Equations and Their Applications; Birkhäuser: Basel, Switzerland, 2001. [Google Scholar]
- Nourazar, S.; Soori, M.; Nazari-Golshan, A. On The Exact Solution of Newell-Whitehead-Segel Equation Using the Homotopy Perturbation Method. Aust. J. Basic Appl. Sci. 2011, 5, 1400. [Google Scholar] [CrossRef]
- Frank–Kamenetskii, D.A. Calculation of thermal explosion limits. Acta. Phys. Chim USSR 1939, 10, 365. [Google Scholar]
- Burgers, J. A Mathematical Model Illustrating the Theory of Turbulence. Adv. Appl. Mech. 1948, 1, 171–199. [Google Scholar] [CrossRef]
- Nariboli, G.A.; Lin, W.C. A New Type of Burgers’ Equation. ZAMM—J. Appl. Math. Mech. Z. Angew. Math. Mech. 1973, 53, 505–510. [Google Scholar] [CrossRef]
- Sachdev, P.L.; Rao, C.S.; Enflo, B.O. Large-Time Asymptotics for Periodic Solutions of the Modified Burgers Equation. Stud. Appl. Math. 2005, 114, 307–323. [Google Scholar] [CrossRef]
- Inan, B. A New Numerical Scheme for the Generalized Huxley Equation. Bull. Math. Sci. Appl. 2016, 16, 105–111. [Google Scholar] [CrossRef]
- Ismail, H.N.; Raslan, K.; Rabboh, A.A.A. Adomian decomposition method for Burger’s—Huxley and Burger’s—Fisher equations. Appl. Math. Comput. 2004, 159, 291–301. [Google Scholar] [CrossRef]
- Negrea, M.; Petrisor, I.; Constantinescu, D. Aspects of the Diffusion of Electrons and Ions in Tokamak Plasma. Rom. J. Phys. 2010, 55, 1013. [Google Scholar]
- Heitjans, P.; Kärger, J. Diffusion in Condensed Matter; Methods, Materials, Models; Springer: New York, NY, USA, 2005. [Google Scholar]
- Pressyanov, D.; Dimitrov, D. The problem with temperature dependence of radon diffusion chambers with anti-thoron barrier. Rom. J. Phys. 2020, 65, 801. [Google Scholar]
- Jannot, Y.; Bal, H.M.; Degiovanni, A.; Moyne, C. Influence of heat transfer on the estimation of water vapor diffusion coefficient in transient regime. Int. J. Heat Mass Transf. 2021, 177, 121558. [Google Scholar] [CrossRef]
- Jiao, D.; Jiao, K.; Du, Q. Numerical investigations of vapor condensation and water transport in gas diffusion layers of PEMFC. Int. J. Heat Mass Transf. 2021, 177, 121543. [Google Scholar] [CrossRef]
- Kennedy, C.A.; Carpenter, M.H. Additive Runge–Kutta schemes for convection–diffusion–reaction equations. Appl. Numer. Math. 2003, 44, 139–181. [Google Scholar] [CrossRef]
- Sengupta, S.; Sengupta, T.K.; Puttam, J.K.; Vajjala, K.S. Global spectral analysis for convection-diffusion-reaction equation in one and two-dimensions: Effects of numerical anti-diffusion and dispersion. J. Comput. Phys. 2020, 408, 109310. [Google Scholar] [CrossRef]
- Jain, A.; Zhou, L.; Parhizi, M. Multilayer one-dimensional Convection-Diffusion-Reaction (CDR) problem: Analytical solution and imaginary eigenvalue analysis. Int. J. Heat Mass Transf. 2021, 177, 121465. [Google Scholar] [CrossRef]
- Guo, Z.; Zhao, T.S. Lattice Boltzmann model for incompressible flows through porous media. Phys. Rev. E 2002, 66, 036304. [Google Scholar] [CrossRef]
- Mojtabi, A.; Charrier-Mojtabi, M.C. Handbook of Porous Media; Dekker: Abingdon, VA, USA, 2000. [Google Scholar]
- Wyss, W. The fractional diffusion equation. J. Math. Phys. 1986, 27, 2782–2785. [Google Scholar] [CrossRef]
- Olver, F.W.J.; Lozier, D.W.; Boisvert, R.F.; Clark, C.W. (Eds.) NIST Handbook of Mathematical Functions; Cambridge University Press: Cambridge, UK, 2010. [Google Scholar]
- Yang, X.; Balenau, D.; Khan, Y.; Mohyud-Din, S.T. Local fractional variational iteration method for diffusion and wave equations on cantor sets. Rom. J. Phys. 2014, 59, 36. [Google Scholar]
- Wang, J.L.; Wu, H.N.; Huang, T.; Ren, S.Y. Analysis and Control of Coupled Neural Networks with Reaction-Diffusion Terms; Methods, Materials, Models; Springer: New York, NY, USA, 2018. [Google Scholar]
- Brush, G. The Kind of Motion We Call Heat; Elsevier: Amsterdam, The Netherlands, 1986. [Google Scholar]
- Lindhard, J.H.; Lindhard, J.H. A Heat Transfer Textbook; Phlogiston Press: Cambridge, UK, 2003. [Google Scholar]
- Jalghaf, H.K.; Kovács, E.; Majár, J.; Nagy, A.; Askar, A.H. Explicit Stable Finite Difference Methods for Diffusion-Reaction Type Equations. Mathematics 2021, 9, 3308. [Google Scholar] [CrossRef]
- Nagy, A.; Saleh, M.; Omle, I.; Kareem, H.; Kovács, E. New Stable, Explicit, Shifted-Hopscotch Algorithms for the Heat Equation. Math. Comput. Appl. 2021, 26, 61. [Google Scholar] [CrossRef]
- Zeldovich, Y.B.; Raizer, Y.P. Physics of Shock Waves and High-Temperature Hydrdodynamic Phemomena; Academic Press: Cambridge, MA, USA, 1966. [Google Scholar]
- Barenblatt, G.I. Scaling; Cambridge Texts in Applied Mathematics; Cambridge University Press: Cambridge, UK, 2003. [Google Scholar]
- Messiah, A. Quantum Mechanics; North-Holland Publishing Company: New York, NY, USA, 1961. [Google Scholar]
- Rother, T. Green’s Functions in Classical Physics; Lecture Notes in Physics; Springer International Publishing: New York, NY, USA, 2017; Volume 938. [Google Scholar]
- Kythe, P.K. Green’s Functions and Linear Differential Equations; Chapman & Hall/CRC Applied Mathrmatics and Nonliner Science; CRC Press: Boca Raton, FL, USA, 2011. [Google Scholar]
- Greiner, W.; Reinhardt, J. Quantum Electrodynamics; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- Bronshtein, I.N.; Semendyayev, K.A.; Musiol, G.; Muehlig, H. Handbook of Mathematics; Springer: Wiesbaden, Germany, 2007. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barna, I.F.; Mátyás, L. Advanced Analytic Self-Similar Solutions of Regular and Irregular Diffusion Equations. Mathematics 2022, 10, 3281. https://doi.org/10.3390/math10183281
Barna IF, Mátyás L. Advanced Analytic Self-Similar Solutions of Regular and Irregular Diffusion Equations. Mathematics. 2022; 10(18):3281. https://doi.org/10.3390/math10183281
Chicago/Turabian StyleBarna, Imre Ferenc, and László Mátyás. 2022. "Advanced Analytic Self-Similar Solutions of Regular and Irregular Diffusion Equations" Mathematics 10, no. 18: 3281. https://doi.org/10.3390/math10183281
APA StyleBarna, I. F., & Mátyás, L. (2022). Advanced Analytic Self-Similar Solutions of Regular and Irregular Diffusion Equations. Mathematics, 10(18), 3281. https://doi.org/10.3390/math10183281