Next Article in Journal
Power-Law Nanofluid Flow over a Stretchable Surface Due to Gyrotactic Microorganisms
Next Article in Special Issue
Wavelet Density and Regression Estimators for Functional Stationary and Ergodic Data: Discrete Time
Previous Article in Journal
Morphology of Hybrid MHD Nanofluid Flow through Orthogonal Coaxial Porous Disks
Previous Article in Special Issue
Efficient Estimation of Two-Parameter Xgamma Distribution Parameters Using Ranked Set Sampling Design
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

On Some Improved Class of Estimators by Using Stratified Ranked Set Sampling

by
Shashi Bhushan
1,†,
Anoop Kumar
2,*,†,
Usman Shahzad
3,
Amer Ibrahim Al-Omari
4,† and
Ibrahim Mufrah Almanjahie
5,6,†
1
Department of Statistics, University of Lucknow, Lucknow 226007, India
2
Department of Statistics, Amity University, Lucknow 226028, India
3
Department of Mathematics & Statistics, International Islamic University, Islamabad 44000, Pakistan
4
Department of Mathematics, Al al-Bayt University, Mafraq 25113, Jordan
5
Department of Mathematics, College of Science, King Khalid University, Abha 62529, Saudi Arabia
6
Statistical Research and Studies Support Unit, King Khalid University, Abha 62529, Saudi Arabia
*
Author to whom correspondence should be addressed.
These authors contributed equally to this work.
Mathematics 2022, 10(18), 3283; https://doi.org/10.3390/math10183283
Submission received: 7 August 2022 / Revised: 3 September 2022 / Accepted: 5 September 2022 / Published: 9 September 2022

Abstract

:
In this manuscript, we propose the combined and separate difference and ratio type estimators of population mean using stratified ranked set sampling. Additionally, several well-known estimators are identified as the sub-class of the suggested estimators. The characteristics of the suggested estimators have been analyzed and their effective performances are compared with the prominent estimators existing till date. Moreover, to prove the credibility of the theoretical findings, an extensive empirical study is administered over some real and hypothetically yielded symmetric and asymmetric populations.

1. Introduction

In sample surveys, the principle focus of any survey practitioner is to provide an estimate of the population parameters with higher efficiency, which not only relies upon the size of the sample and sampling fraction but also upon the heterogeneity or variability of the population. The customary sampling procedure utilized to reduce the heterogeneity of the population is stratified simple random sampling (SSRS). Several estimation procedures have been developed by various prominent authors, namely, [1,2,3,4,5], to efficiently estimate population parameters under SSRS. Ref. [6] is known as the pioneer who acquainted the notion of ranked set sampling (RSS) as an efficient option of simple random sampling (SRS) scheme, whereas motivated by [6,7] originated the idea of stratified ranked set sampling (SRSS) as an alternative sampling scheme to stratified simple random sampling which merge the profits of stratification and ranked set sampling to determine an unbiased estimator of population mean having likely improvement in the efficiency. In counterpoint to SSRS, the quantified units in SRSS do not lend identically to draw inference because of the further structure that imposes ranking, permitting observations to tempt various dimensions of the population and to obtain possible advantages in efficiency.
Ranked set sampling has quite broad literature starting with [6] and extending to many variations till date. One of the variations of RSS is SRSS mooted by [7]. Later on, Ref. [8] envisaged the ratio estimator under SRSS. [9] analyzed some modified ratio estimators by using auxiliary information under SRSS. Ref. [10] suggested the regression estimator under SRSS. Ref. [11] considered the Hartley-Ross kind of unbiased estimators under RSS and SRSS. Ref. [12] developed naive and ratio estimators under bivariate SRSS with optimal allocation. Ref. [13] examined a regression estimator under different SRSS schemes. Ref. [14] introduced the ratio type estimator using quartiles as auxiliary information under SRSS. Ref. [15] considered estimating the population mean using stratified median RSS. Ref. [16] investigated stratified percentile RSS, whereas, [17] suggested ratio estimators of the population mean using auxiliary information in SRS and median RSS. Some novel log type estimators have been suggested by [18] for the estimation of population mean under RSS. Ref. [19] discussed an estimation procedure of population mean under different SRSS with simulation study application to body mass index data. The interested readers may also see the study of [20,21,22,23,24,25,26,27,28], and the references cited therein.

Methodology and Notations

In sampling theory, the major concern of any surveyor is to enhance the efficacy of the proposed estimators. The SRSS becomes a better alternative over the other sampling strategies provided the ranking of units is possible. The methodology of SRSS is consisting of drawing independently m h random samples of size m h units from the h t h ( h = 1 , 2 , , L ) stratum of the population. Here, m h is a set size of stratum h that should be kept small to ward off the large ranking errors. Now, the ranking is performed according to the variable of interest over the observations of each sample and the procedure of RSS is utilized to obtain independent L ranked set samples each of size m h provided h = 1 L m h = m . The prior process consummates a cycle of SRSS. The entire cycle can be iterated r times to ascertain the required n h = m h r sample size in stratum h.
To determine the estimate of the population mean Y ¯ of the study variable Y, we perform the ranking with the auxiliary variable X. For cycle r and stratum h, let ( X h ( 1 ) r , Y h [ 1 ] r ) , ( X h ( 2 ) r , Y h [ 2 ] r ) , …, ( X h ( m h ) r , Y h [ m h ] r ) be the stratified ranked set sample having joint probability density function f ( x h , y h ) and cumulative distribution function F ( x h , y h ) . We note that the parenthesis ( ) used in the variable X symbolizes the perfect ranking of units, whereas the parenthesis [ ] used in the variable Y symbolizes the imperfect ranking of units. Moreover, the notations used throughout this article are defined hereunder.
N: size of population;
N h : size of population in stratum h;
n: size of sample;
n h : size of sample in stratum h;
W h = N h / N : weight of stratum h;
y ¯ h = i = 1 n h y h i / n h : sample mean of variable Y in stratum h;
y ¯ s t = h = 1 L W h y h : sample mean of variable Y;
x ¯ h = i = 1 n h x h i / n h : sample mean of variable X in stratum h;
x ¯ s t = h = 1 L W h x h : sample mean of variable X;
y ¯ [ srss ] = h = 1 L W h y ¯ h [ rss ] : stratified ranked set sample mean of variable Y;
x ¯ ( srss ) = h = 1 L W h x ¯ h ( rss ) : stratified ranked set sample mean of variable X;
y ¯ h [ rss ] = i = 1 m h j = 1 r y h [ i ] j / m h r : ranked set sample mean of variable Y in stratum h;
x ¯ h ( r s s ) = i = 1 m h j = 1 r x h ( i ) j / m h r ; ranked set sample mean of variable X in stratum h;
Y ¯ h = i = 1 N h y h i / N h : population mean of variable Y in stratum h;
Y ¯ = Y ¯ s t = h = 1 L W h Y h : population mean of variable Y;
X ¯ h = i = 1 N h x h i / N h : population mean of variable X in stratum h;
X ¯ = X ¯ s t = h = 1 L W h X h : population mean of variable X;
R = Y ¯ / X ¯ : population ratio;
R h = Y ¯ h / X ¯ h : population ratio in stratum h;
S y h 2 = ( N h 1 ) 1 h = 1 N h ( y h i Y ¯ h ) 2 : population variance of variable Y in stratum h;
S x h 2 = ( N h 1 ) 1 h = 1 N h ( x h i X ¯ h ) 2 : population variance of variable X in stratum h;
S x y h = ( N h 1 ) 1 h = 1 N h ( x h i X ¯ h ) ( y h i Y ¯ h ) : population covariance between variables X and Y in stratum h;
ρ x y h = S x y h / S x h S y h : population correlation coefficient between variables X and Y in stratum h;
C y h : population coefficient of variation for variable Y in stratum h;
C x h : population coefficient of variation for variable X in stratum h;
β 1 ( x h ) = ( E ( x ¯ h X ¯ h ) 3 ) 2 / ( E ( x ¯ h X ¯ h ) 2 ) 2 : population coefficient of skewness for variable X in stratum h;
β 2 ( x h ) = ( E ( x ¯ h X ¯ h ) ) 4 / ( E ( x ¯ h X ¯ h ) 2 ) 2 : population coefficient of kurtosis for variable X in stratum h.
To determine the MSE of the combined estimators, the following notations will be utilized throughout this paper. Suppose, y ¯ [ srss ] = Y ¯ ( 1 + ϵ 0 ) and x ¯ ( srss ) = X ¯ ( 1 + ϵ 1 ) such that E ( ϵ 0 ) = E ( ϵ 1 ) = 0 and
V r , s = h = 1 L W h r + s E ( x ¯ ( srss ) X ¯ ) r ( y ¯ [ srss ] Y ¯ ) s X ¯ r Y ¯ s
Following (1), we can write
E ( ϵ 0 2 ) = h = 1 L W h 2 ( γ h C y h 2 D y h [ i ] 2 ) = V 0 , 2
E ( ϵ 1 2 ) = h = 1 L W h 2 ( γ h C x h 2 D x h ( i ) 2 ) = V 2 , 0
E ( ϵ 0 , ϵ 1 ) = h = 1 L W h 2 ( γ h ρ x y h C x h C y h D x y h [ i ] ) = V 1 , 1
where
γ h = 1 m h r C x h = S x h X ¯ C y h = S y h Y ¯ D x h ( i ) 2 = 1 m h 2 r i = 1 m h τ x h ( i ) 2 X ¯ 2 D y h [ i ] 2 = 1 m h 2 r i = 1 m h τ y h [ i ] 2 Y ¯ 2 D x y h [ i ] = 1 m h 2 r i = 1 m h τ x y h [ i ] X ¯ Y ¯ τ x h ( i ) = ( μ x h ( i ) X ¯ h ) τ y h [ i ] = ( μ y h [ i ] Y ¯ h ) τ x y h [ i ] = ( μ x h ( i ) X ¯ h ) ( μ y h [ i ] Y ¯ h )
It is worth mentioning that the valuations μ x h ( i ) and μ y h [ i ] consist of order statistics with fixed distributions which can be obtained from [29], whereas the quantities μ x h ( i ) and μ y h [ i ] can be considered equal in the absence of judgement error given that both variables possess the identical distributions, refer to [30].
To determine the properties of separate estimators, the following notations will be used throughout this paper. Let y ¯ [ rss ] = Y ¯ ( 1 + ϵ 0 h ) , x ¯ h ( rss ) = X ¯ ( 1 + ϵ 1 h ) given that E ( ϵ 0 h ) = E ( ϵ 1 h ) = 0 ,
E ( ϵ 0 h 2 ) = γ h S y h 2 Y ¯ h 2 M y h [ i ] 2 = U 0 E ( ϵ 1 h 2 ) = γ h S x h 2 X ¯ h 2 M x h ( i ) 2 = U 1 E ( ϵ 0 h , ϵ 1 h ) = γ h ρ x y h S x h X ¯ h S y h Y ¯ h M x y h [ i ] = U 10
where
M x h ( i ) 2 = 1 m h 2 r i = 1 m h τ x h ( i ) 2 X ¯ h 2 M y h [ i ] 2 = 1 m h 2 r i = 1 m h τ y h [ i ] 2 Y ¯ h 2 M x y h [ i ] = 1 m h 2 r i = 1 m h τ x y h [ i ] X ¯ h Y ¯ h
The principle objective of this article is to study the performance of the proposed combined and separate classes of estimators under SRSS. The outline of the article is divided as follows. A detailed review of the combined and separate estimators is discussed in Section 2. Some improved class of combined and separate estimators along with their characteristics are introduced in Section 3. The theoretical comparison of the proposed combined and separate estimators with the existing estimators is shown in Section 4. In favour of the theoretical results, an empirical study has been accomplished in Section 5. The interpretation of the empirical findings is drawn in Section 6. Finally, the conclusion of this study is discussed in Section 7.

2. Review of Existing Estimators

2.1. Combined Estimators

The conventional mean estimator utilizing SRSS is prescribed as
T m c = y ¯ [ srss ]
where the superscript “c” stands for “combined” and the subscript “srss” stand for “stratified ranked set sampling”.
Ref. [8] suggested the combined ratio estimator as
T r c = y ¯ [ srss ] x ¯ ( srss ) X ¯
Ref. [10] introduced the combined regression estimator utilizing S R S S as
T β c = y ¯ [ srss ] + β ( X ¯ x ¯ ( srss ) )
where β is the regression coefficient of Y on X.
Following [31], we define the combined regression cum ratio estimators under SRSS as
T s g 1 c = λ s y ¯ [ srss ] + β ( X ¯ x ¯ ( srss ) ) z ¯ ( srss ) Z
where λ s is characterizing scalar, z ¯ ( srss ) = h = 1 L W h ( x ¯ h + X ) , Z ¯ = h = 1 L W h ( X ¯ h + X ) , and X is the population total.
Following [32], one may introduce a combined family of estimator under SRSS as
T s v 1 c = λ 1 y ¯ [ srss ] + λ 2 b ( X ¯ x ¯ ( srss ) ) z ¯ ( srss ) * Z ¯ * α
where λ 1 , λ 2 , b, and α are characterizing scalars.
Motivated by [33], one may develop a combined class of estimators under SRSS as
T k k 1 c = λ k y ¯ [ srss ] a X ¯ + b α ( a x ¯ ( srss ) + b ) + ( 1 α ) ( a X ¯ + b ) g
where α is a characterizing scalar and g is a constant that takes quantities 1 and −1 to produce ratio and product kind of estimators, respectively. Furthermore, ( a 0 ) and b are real values generally taken to be a function of available parameters of the auxiliary variable X, such as population standard deviation S x h , population coefficient of kurtosis β 2 ( x h ) , population coefficient of variation C x h , and population coefficient of correlation ρ x y h .
Following [34], one may consider a combined new family of estimator as
T k k 2 c = k 1 y ¯ [ srss ] + k 2 ( X ¯ x ¯ ( srss ) ) a X ¯ + b a x ¯ ( srss ) + b
where k 1 and k 2 are characterizing scalars.
Motivated by [35], we investigate a combined regression cum exponential type estimator under SRSS as
T s g 2 c = d 1 y ¯ [ srss ] + d 2 ( X ¯ x ¯ ( srss ) ) exp Z ¯ z ¯ ( srss ) Z ¯ + z ¯ ( srss )
where d 1 and d 2 are characterizing scalars.
Following [36], one may consider a general combined estimation procedure of population mean Y ¯ as
T s v 2 c = Λ 1 y ¯ [ srss ] + Λ 2 y ¯ [ srss ] x ¯ ( srss ) * X ¯ * β
where Λ 1 and Λ 2 are characterizing scalars. Additionally, x ¯ ( srss ) * = h = 1 L W h ( a h x ¯ h + b h ) and X ¯ * = h = 1 L W h ( a h X ¯ h + b h ) .
On the lines of [1], one may consider a new combined family of estimators under SRSS as
T s s 1 c = κ 1 y ¯ [ srss ] α ( a x ¯ ( srss ) + b ) + ( 1 α ) ( a X ¯ + b ) ( a X ¯ + b ) δ + ψ 1 y ¯ [ srss ] ( a X ¯ + b ) α ( a x ¯ ( srss ) + b ) + ( 1 α ) ( a X ¯ + b ) g
where κ 1 , ψ 1 , δ , g, and α are characterizing scalars.
Following [3], one may suggest a combined ratio exponential type estimator in SRSS as
t u c = y ¯ [ srss ] exp X ¯ x ¯ ( srss ) X ¯ + ( a 1 ) x ¯ ( srss )
where a is the positive real constant.
Following [2], we envisage a class of combined estimator under SRSS as
T s s 2 c = κ 2 y ¯ [ srss ] X ¯ * α x ¯ ( srss ) * + ( 1 α ) X ¯ * + ψ 2 y ¯ [ srss ] exp δ ( X ¯ * x ¯ ( srss ) ) ( X ¯ * + x ¯ ( srss ) )
where α and δ are real constants. Furthermore, κ 2 and ψ 2 are characterizing scalars.
Ref. [9] developed some ratio estimators of [37] under SRSS as
T m m 1 c = y ¯ [ srss ] h = 1 L W h ( X ¯ h + C x h ) h = 1 L W h ( x ¯ h ( r h ) + C x h )
T m m 2 c = y ¯ [ srss ] h = 1 L W h ( X ¯ h + β 2 ( x h ) ) h = 1 L W h ( x ¯ h ( r h ) + β 2 ( x h ) )
T m m 3 c = y ¯ [ srss ] h = 1 L W h ( X ¯ h β 2 ( x h ) + C x h ) h = 1 L W h ( x ¯ h ( r h ) β 2 ( x h ) + C x h )
T m m 4 c = y ¯ [ srss ] h = 1 L W h ( X ¯ h C x h + β 2 ( x h ) ) h = 1 L W h ( x ¯ h ( r h ) C x h + β 2 ( x h ) )
Ref. [38] examined an advanced ratio estimator of [39] under SRSS as
T m m c = k y ¯ [ srss ] X ¯ x ¯ ( srss )
where k is a characterizing scalar.
Following [4], one may define the following combined class of estimators under SRSS as
T s s 3 c = κ 3 y ¯ [ srss ] X ¯ * x ¯ ( srss ) * α exp β ( X ¯ * x ¯ ( srss ) ) ( X ¯ * + x ¯ ( srss ) ) + ψ 3 x ¯ ( srss ) * X ¯ * η y ¯ [ srss ] exp δ ( x ¯ ( srss ) X ¯ * ) ( x ¯ ( srss ) + X ¯ * )
where κ 3 and ψ 3 are characterizing scalars and α , β , η , and δ are real constants.
Ref. [14] suggested ratio estimators as
T s k t c = y ¯ [ srss ] X ¯ x ¯ ( srss ) + q t X ¯ + x ¯ ( srss ) + q t ; t = 1 , 3
where q t , t = 1 , 3 is the t t h quartile.
The readers are referred to Appendix A for the mean square error (MSE) expressions of these estimators.

2.2. Separate Estimators

The separate conventional mean estimator may be defined as
T m s = h = 1 L W h y ¯ h [ rss ]
The superscript “s” means “separate” and the subscript “rss” means “ranked set sampling.”
Ref. [8] developed the classical separate ratio estimator as
T r s = h = 1 L W h y ¯ h [ rss ] x ¯ h ( rss ) X ¯ h
Ref. [10] considered the separate regression estimator as
T β s = h = 1 L W h y ¯ h [ rss ] + β h ( X ¯ h x ¯ h ( rss ) )
where β h is the regression coefficient of Y on X in stratum h.
Following [31], one may define a separate regression cum ratio estimator under SRSS as
T s g 1 s = h = 1 L W h λ s h y ¯ h [ rss ] + β h ( X ¯ h x ¯ h ( rss ) ) z ¯ h ( rss ) Z ¯ h
where λ s h is a suitably chosen scalar, z h ( rss ) = x ¯ h ( rss ) + X h , Z ¯ h = X ¯ h + X h and X h is the population total.
Motivated by [32], one may consider a separate family of estimators under SRSS as
T s v 1 s = h = 1 L W h λ 1 h y ¯ h [ rss ] + λ 2 h b h ( X ¯ h x ¯ h ( rss ) ) z ¯ h ( rss ) * Z ¯ h * α
where λ 1 h , λ 2 h , and α are suitably chosen scalars.
Motivated by [33], one may consider a separate family of estimators under SRSS as
T k k 1 s = h = 1 L W h λ k h y ¯ h [ rss ] a h X ¯ h + b h α h ( a h x ¯ h ( rss ) + b h ) + ( 1 α h ) ( a h X ¯ h + b h ) g
where λ k h is a suitably chosen scalar, α h is a fixed constant, and g considers real values to produce the product and ratio type estimators. Furthermore, ( a h 0 ) and b h are real values generally taken to be a function of the available parameters of the auxiliary variable X namely, mean X ¯ h standard deviation S x h , coefficient of kurtosis β 2 ( x h ) , coefficient of variation C x h , and coefficient of correlation ρ x y h in the stratum h.
Following [34], one may consider the following separate families of estimators as
T k k 2 s = h = 1 L W h k 1 h y ¯ h [ rss ] + k 2 h ( X ¯ h x ¯ h ( rss ) ) a h X ¯ h + b h a h x ¯ h ( rss ) + b h
where k 1 h and k 2 h are suitably chosen scalars.
Motivated by [35], one may propose a separate regression cum exponential type estimator utilizing SRSS as
T s g 2 s = h = 1 L W h { d 1 h y ¯ h [ rss ] + d 2 h ( X ¯ h x ¯ h ( rss ) ) } exp Z ¯ h z ¯ h ( rss ) Z ¯ h + z ¯ h ( rss )
where d 1 h and d 2 h are optimizing scalars.
Following [36], one may suggest a separate general estimation procedure for SRSS as
T s v 2 s = h = 1 L W h Λ 1 h y ¯ h [ rss ] + Λ 2 h y ¯ h [ rss ] x ¯ h ( rss ) * X ¯ h * β
where Λ 1 h and Λ 2 h are optimizing scalars, x ¯ h ( rss ) * = ( a h x ¯ h + b h ) , and X ¯ h * = ( a h X ¯ h + b h ) .
On the lines of [1], one may consider a separate estimator for Y ¯ utilizing SRSS as
T s s 1 s = h = 1 L W h y ¯ h [ rss ] κ 1 h α h x ¯ h ( rss ) * + ( 1 α h ) X ¯ h * X ¯ h * δ + ψ 1 h X ¯ h * α h x ¯ h ( rss ) * + ( 1 α h ) X ¯ h * g
where κ 1 h and ψ 1 h are suitably chosen scalars and δ , g, and α are constants.
Following [3], one may suggest a separate version of the ratio exponential kind of estimators of Y ¯ utilizing SRSS as
T u s = h = 1 L W h y ¯ h [ rss ] exp X ¯ h x ¯ h ( rss ) X ¯ h + ( a h 1 ) x ¯ h ( rss )
where a h is the positive real constant.
Motivated by [2], one may envisage a separate class of estimators under SRSS as
T s s 2 s = h = 1 L W h y ¯ h [ rss ] κ 2 h X ¯ h * α h x ¯ h ( rss ) * + ( 1 α h ) X ¯ h * + ψ 2 h exp δ ( X ¯ h * x ¯ h ( rss ) ) ( X ¯ h * + x ¯ h ( rss ) )
where α , δ are real constants and κ 2 h , ψ 2 h are suitably chosen scalars.
The separate version of [9] estimator under SRSS is given by
T m m 1 s = h = 1 L W h y ¯ h [ rss ] X ¯ h + C x h x ¯ h ( rss ) + C x h
T m m 2 s = h = 1 L W h y ¯ h [ rss ] X ¯ h + β 2 ( x h ) x ¯ h ( rss ) + β 2 ( x h )
T m m 3 s = h = 1 L W h y ¯ h [ rss ] X ¯ h β 2 ( x h ) + C x h x ¯ h ( rss ) β 2 ( x h ) + C x h
T m m 4 s = h = 1 L W h y ¯ h [ rss ] X ¯ h C x h + β 2 ( x h ) x ¯ h ( rss ) C x h + β 2 ( x h )
The separate version of [38] estimator under SRSS is given by
T m m s = h = 1 L W h k h y ¯ [ rss ] X ¯ h x ¯ h ( rss )
where k h is the characterizing scalar.
Following [4], one may consider the following separate class of estimators under SRSS as
T s s 3 s = h = 1 L W h y ¯ h [ rss ] κ 3 h X ¯ h * x ¯ h ( rss ) * α exp β ( X ¯ h * x ¯ h ( rss ) ) ( X ¯ h * + x ¯ h ( rss ) ) + ψ 3 h x ¯ h ( rss ) * X ¯ h * η exp δ ( x ¯ h ( rss ) X ¯ h * ) ( x ¯ h ( rss ) + X ¯ h * )
where κ 3 h and ψ 3 h are characterizing scalars and α , β , η , and δ are real constants.
The separate form of [14] estimator is given by
T s k t s = h = 1 L W h y ¯ h [ rss ] X ¯ h x ¯ h ( rss ) + q t h X ¯ h + x ¯ h ( rss ) + q t h ; t = 1 , 3
The readers are referred to Appendix B for the MSE expressions of these estimators.

3. Proposed Estimators

The motivation of the present manuscript is to examine some efficient combined and separate estimators for the computation of population mean under SRSS. These estimators furnish a better choice to the conventional estimators brushed up in Section 2. In our proposal, we have suggested some improved class of estimators utilizing auxiliary information under S R S S .

3.1. Combined Estimators

We propose some improved combined class of difference and ratio kind of estimators as
T y 1 c = α 1 y ¯ [ srss ] + β 1 ( x ¯ ( srss ) X ¯ )
T y 2 c = α 2 y ¯ [ srss ] X ¯ x ¯ ( srss ) β 2
T y 3 c = α 3 y ¯ [ srss ] X ¯ X ¯ + β 3 ( x ¯ ( srss ) X ¯ )
T y 4 c = α 4 y ¯ [ srss ] + β 4 ( x ¯ ( srss ) * X ¯ * )
T y 5 c = α 5 y ¯ [ srss ] X ¯ * x ¯ ( srss ) * β 5
T y 6 c = α 6 y ¯ [ srss ] X ¯ * X ¯ * + β 6 ( x ¯ ( srss ) * X ¯ * )
where α i and β i , i = 1 , 2 , , 6 are characterizing scalars. Further, we noticed that the proposed estimators T y i c , i = 1 , 2 , , 6 reduce to some known estimators, such as:
  • Classical mean estimator T m c , for ( α i , β i ) = ( 1 , 0 ) ;
  • Classical regression estimator T β c , for ( α 1 , β 1 ) = ( 1 , β 1 ) ;
  • Classical ratio estimator T r c , for ( α 2 , β 2 ) = ( 1 , 1 ) ;
  • [9] estimator T m m 1 c , for ( α 5 , β 5 , a , b ) = ( 1 , 1 , 1 , C x ) ;
  • [9] estimator T m m 2 c , for ( α 5 , β 5 , a , b ) = ( 1 , 1 , 1 , β 2 ( x ) ) ;
  • [9] estimator T m m 3 c , for ( α 5 , β 5 , a , b ) = ( 1 , 1 , β 2 ( x ) , C x ) ;
  • [9] estimator T m m 4 c , for ( α 5 , β 5 , a , b ) = ( 1 , 1 , C x , β 2 ( x ) ) , and
  • [38] estimator T m m c , for ( α 2 , β 2 ) = ( α 2 , 1 ) .
Similarly, putting different values of the scalars, one may develop several other class of estimators.
Theorem 1.
The MSE of the proposed classes of estimators T y i c , i = 1 , 2 , , 6 is given by
M S E ( T y 1 c ) = Y ¯ 2 ( α 1 1 ) 2 + α 1 2 V 0 , 2 + X ¯ 2 Y ¯ 2 β 1 2 V 2 , 0 + 2 X ¯ Y ¯ α 1 β 1 V 1 , 1
M S E ( T y 2 c ) = Y ¯ 2 1 + α 2 2 1 + V 0 , 2 + β 2 ( 2 β 2 + 1 ) V 2 , 0 4 β 2 V 1 , 1 2 α 2 1 + β 2 ( β 2 + 1 ) 2 V 2 , 0 β 2 V 1 , 1
M S E ( T y 3 c ) = Y ¯ 2 ( 1 + α 3 2 ( 1 + V 0 , 2 + 3 β 3 2 V 2 , 0 4 β 3 V 1 , 1 ) 2 α 3 ( 1 + β 3 2 V 2 , 0 β 3 V 1 , 1 ) )
M S E ( T y 4 c ) = Y ¯ 2 ( α 4 1 ) 2 + α 4 2 V 0 , 2 + X ¯ 2 Y ¯ 2 β 4 2 υ 2 V 2 , 0 + 2 X ¯ Y ¯ α 4 β 4 υ V 1 , 1
M S E ( T y 5 c ) = Y ¯ 2 1 + α 5 2 1 + V 0 , 2 4 β 5 υ V 1 , 1 + β 5 ( 2 β 5 + 1 ) υ 2 V 2 , 0 2 α 5 1 + β 5 ( β 5 + 1 ) 2 υ 2 V 2 , 0 β 5 υ V 1 , 1
M S E ( T y 6 c ) = Y ¯ 2 1 + α 6 2 1 + V 0 , 2 + 3 β 6 2 υ 2 V 2 , 0 4 β 6 υ V 1 , 1 2 α 6 1 + β 6 2 υ 2 V 2 , 0 β 6 υ V 1 , 1
Proof. 
The outline of the derivations are reported in Appendix C. □
Corollary 1.
The minimum MSE of the proposed combined estimators at the optimum values of α i and β i is given by
m i n M S E ( T y i c ) = Y ¯ 2 ( 1 α i ( opt ) ) = Y ¯ 2 1 P i 2 Q i ; i = 1 , 3 , 4 , 6
m i n M S E ( T y i c ) = Y ¯ 2 1 P i 2 Q i ; i = 2 , 5
Proof. 
The outline of the derivation and definitions of the parametric functions P i and Q i , i = 1 , 2 , , 6 are given in Appendix C. □

3.2. Separate Estimators

We also propose some separate class of difference and ratio kind of estimators of as
T y 1 s = h = 1 L W h α 1 h y ¯ h [ rss ] + β 1 h ( x ¯ h ( rss ) X ¯ h )
T y 2 s = h = 1 L W h α 2 h y ¯ h [ rss ] X ¯ h x ¯ h ( rss ) β 2 h
T y 3 s = h = 1 L W h α 3 h y ¯ h [ rss ] X ¯ h X ¯ h + β 3 h ( x ¯ h ( rss ) X ¯ h )
T y 4 s = h = 1 L W h α 4 h y ¯ h [ rss ] + β 4 h ( x ¯ h ( rss ) * X ¯ h * )
T y 5 s = h = 1 L W h α 5 h y ¯ h [ rss ] X ¯ h * x ¯ h ( rss ) * β 5 h
T y 6 s = h = 1 L W h α 6 h y ¯ h [ rss ] X ¯ h * X ¯ h * + β 6 h ( x ¯ h ( rss ) * X ¯ h * )
where α i h and β i h , i = 1 , 2 , , 6 are suitably chosen scalars. It is worth mentioning that the proposed estimators T y i s , ( i = 1 , 2 , , 6 ) reduce to some known estimators such as:
  • Classical regression estimator T β s for ( α 1 h , β 1 h ) = ( 1 , β 1 h ) ;
  • Conventional mean estimator T m s for ( α 2 h , β 2 h ) = ( 1 , 0 ) ;
  • Classical ratio estimator T r s for ( α 2 h , β 2 h ) = ( 1 , 1 ) ;
  • [9] estimator T m m 1 s for ( α 5 h , β 5 h , a h , b h ) = ( 1 , 1 , 1 , C x h ) ;
  • [9] estimator T m m 2 s for ( α 5 h , β 5 h , a h , b h ) = ( 1 , 1 , 1 , β 2 ( x h ) ) ;
  • [9] estimator T m m 3 s for ( α 5 h , β 5 h , a h , b h ) = ( 1 , 1 , β 2 ( x h ) , C x h ) ;
  • [9] estimator T m m 4 s for ( α 5 h , β 5 h , a h , b h ) = ( 1 , 1 , C x h , β 2 ( x h ) ) , and
  • [38] estimator T m m s for ( α 2 h , β 2 h ) = ( α 2 h , 1 ) .
Likewise, one may develop various other classes of estimators for different values of scalars.
Theorem 2.
The MSE of the proposed estimators T y i s , i = 1 , 2 , , 6 is given by:
M S E ( T y 1 s ) = h = 1 L W h 2 Y ¯ h 2 ( α 1 h 1 ) 2 + α 1 h 2 U 0 + X ¯ h 2 Y ¯ h 2 β 1 h 2 U 1 + 2 X ¯ h Y ¯ h α 1 h β 1 h U 10
M S E ( T y 2 s ) = h = 1 L W h 2 Y ¯ h 2 1 + α 2 h 2 1 + U 0 + β 2 h ( 2 β 2 h + 1 ) U 1 4 β 2 h U 10 2 α 2 h 1 + β 2 h ( β 2 h + 1 ) 2 U 1 β 2 h U 10
M S E ( T y 3 s ) = h = 1 L W h 2 Y ¯ h 2 1 + α 3 h 2 1 + U 0 + 3 β 3 h 2 U 1 4 β 3 h U 10 2 α 3 h 1 + β 3 h 2 U 1 β 3 h U 10
M S E ( T y 4 s ) = h = 1 L W h 2 Y ¯ h 2 ( α 4 1 ) 2 + α 4 h 2 U 0 + X ¯ h 2 Y ¯ h 2 β 4 h 2 υ h 2 U 1 + 2 X ¯ h Y ¯ h α 4 h β 4 h υ h U 10
M S E ( T y 5 s ) = h = 1 L W h 2 Y ¯ h 2 1 + α 5 h 2 1 + U 0 4 β 5 h υ h U 10 + β 5 h ( 2 β 5 h + 1 ) υ h 2 U 1 2 α 5 h 1 + β 5 h ( β 5 h + 1 ) 2 υ h 2 U 1 β 5 h υ U 10
M S E ( T y 6 s ) = h = 1 L W h 2 Y ¯ h 2 1 + α 6 h 2 1 + U 0 + 3 β 6 h 2 υ h 2 U 1 4 β 6 h υ h U 10 2 α 6 h 1 + β 6 h 2 υ h 2 U 1 β 6 h υ h U 10
Proof. 
The outline of the derivations are reported in Appendix D. □
Corollary 2.
The minimum MSE of the proposed estimators T y i s , i = 1 , 2 , , 6 is given by
m i n M S E ( T y i s ) = h = 1 L W h 2 Y ¯ h 2 ( 1 α i h ( opt ) ) = h = 1 L W h 2 Y ¯ h 2 1 P i h 2 Q i h ; i = 1 , 3 , 4 , 6
m i n M S E ( T y i s ) = h = 1 L W h 2 Y ¯ h 2 1 P i h 2 Q i h ; i = 2 , 5
Proof. 
The outline of the derivation and definitions of the parametric functions P i h and Q i h , i = 1 , 2 , , 6 are given in Appendix D. □
We would like to note that the MSE expressions of Theorem 1, Theorem 2, Corollary 1 and Corollary 2 are important to determine the conditions of the succeeding section.

4. Efficiency Comparison

In the present section, we perform an efficiency comparison of the proposed combined and separate estimators with the existing combined and separate estimators.

4.1. Combined Estimators

By likening the minimum MSE of the proposed combined estimators T y i c , i = 1 , 2 , , 6 from (55) and (56) with the minimum MSE of the brushed up estimators from (A1), (A2), (A5), (A6), (A8), (A10), (A12), (A14), (A16), (A18), (A20), (A21), (A22) and (A23), we obtain the efficiency conditions given hereunder.
M S E ( T m c ) > M S E ( T y i c ) P i 2 Q i > 1 V 0 , 2
M S E ( T r c ) > M S E ( T y i c ) P i 2 Q i > 1 V 0 , 2 V 2 , 0 + 2 V 1 , 1
M S E ( T β c ) > M S E ( T y i c ) P i 2 Q i > 1 V 0 , 2 + V 1 , 1 2 V 2 , 0
M S E ( T s g 1 c ) > M S E ( T y i c ) P i 2 Q i > λ s ( opt )
M S E ( T s v 1 c ) > M S E ( T y i c ) P i 2 Q i > B 1 D 1 2 + A 1 2 E 1 2 C 1 D 1 E 1 A 1 B 1 C 1 2
M S E ( T k k 1 c ) > M S E ( T y i c ) P i 2 Q i > A 2 4 B
M S E ( T k k 2 c ) > M S E ( T y i c ) P i 2 Q i > 1 ( υ 2 V 2 , 0 1 ) ( V 2 , 0 V 0 , 2 V 1 , 1 2 ) υ 2 V 2 , 0 2 + V 1 , 1 2 V 2 , 0 ( 1 + V 0 , 2 )
M S E ( T s g 2 c ) > M S E ( T y i c ) P i 2 Q i > V 2 , 0 4 ( N + 1 ) 2 + 1 V 2 , 0 8 ( N + 1 ) 2 2 1 + V 0 , 2 V 1 , 1 2 V 2 , 0
M S E ( T s v 2 c ) > M S E ( T y i c ) P i 2 Q i > ( A 2 D 2 2 + B 2 2 C 2 D 2 ) ( A 2 B 2 C 2 2 )
M S E ( T s s i c ) > M S E ( T y i c ) P i 2 Q i > ( F i J i 2 + G i I i 2 2 H i I i J i ) ( F i G i H i 2 )
M S E ( T u c ) > M S E ( T y i c ) P i 2 Q i > 1 V 0 , 2 + V 1 , 1 2 V 2 , 0
M S E ( T m m i c ) > M S E ( T y i c ) P i 2 Q i > 1 V 0 , 2 λ i 2 V 2 , 0 + 2 λ i V 1 , 1
M S E ( T m m c ) > M S E ( T y i c ) P i 2 Q i > 1 ( k * 1 ) 2 V 0 , 2 k * 2 V 2 , 0 + 2 k * V 1 , 1
M S E ( T s k t c ) > M S E ( T y i c ) P i 2 Q i > 1 V 0 , 2 + P t V 2 , 0 2 2 P t 2 V 1 , 1
If the conditions (71) to (84) satisfy, then the proposed combined estimators dominate the existing combined estimators brushed up in Section 2.1.

4.2. Separate Estimators

On likening the minimum MSE of the proposed separate estimators T y i s , i = 1 , 2 , , 6 from (69) and (70) with the minimum MSE of the brushed up estimators from (A24), (A25), (A27), (A29), (A31), (A33), (A35), (A37), (A39), (A41), (A43), (A44), (A45) and (A46), we obtain the efficiency conditions given hereunder.
M S E ( T y i s ) < M S E ( T m s )
h = 1 L W h 2 Y ¯ h 2 1 P i h 2 Q i h < h = 1 L W h 2 Y ¯ h 2 U 0 M S E ( T y i s ) < M S E ( T r s )
h = 1 L W h 2 Y ¯ h 2 1 P i h 2 Q i h < h = 1 L W h 2 Y ¯ h 2 ( U 0 + U 1 2 U 10 ) M S E ( T y i s ) < M S E ( T β s )
h = 1 L W h 2 Y ¯ h 2 1 P i h 2 Q i h < h = 1 L W h 2 Y ¯ h 2 U 0 U 10 2 U 1 M S E ( T y i s ) < M S E ( T s g 1 s )
h = 1 L W h 2 Y ¯ h 2 ( 1 P i h 2 Q i h ) < h = 1 L W h 2 Y ¯ h 2 1 λ s h ( opt ) M S E ( T y i s ) < M S E ( T s v 1 s )
h = 1 L W h 2 Y ¯ h 2 1 P i h 2 Q i h < h = 1 L W h 2 Y ¯ h 2 1 ( B 1 h D 1 h 2 + A 1 h 2 E 1 h 2 C 1 h D 1 h E 1 h ) ( A 1 h B 1 h C 1 h 2 ) M S E ( T y i s ) < M S E ( T k k 1 s )
h = 1 L W h 2 Y ¯ h 2 1 P i h 2 Q i h < h = 1 L W h 2 Y ¯ h 2 1 A h 2 4 B h M S E ( T y i s ) < M S E ( T k k 2 s )
h = 1 L W h 2 Y ¯ h 2 1 P i h 2 Q i h < h = 1 L W h 2 Y ¯ h 2 ( υ h 2 U 1 1 ) ( U 1 U 0 U 10 2 ) υ h 2 U 1 2 + U 10 2 U 1 ( 1 + U 0 ) M S E ( T y i s ) < M S E ( T s g 2 s )
h = 1 L W h 2 Y ¯ h 2 1 P i h 2 Q i h < h = 1 L W h 2 Y ¯ h 2 1 U 1 4 ( N + 1 ) 2 1 U 1 8 ( N + 1 ) 2 2 1 + U 0 U 10 2 U 1 M S E ( T y i s ) < M S E ( T s v 2 s )
h = 1 L W h 2 Y ¯ h 2 1 P i h 2 Q i h < h = 1 L W h 2 Y ¯ h 2 1 ( A 2 h D 2 h 2 + B 2 h 2 C 2 h D 2 h ) ( A 2 h B 2 h C 2 h 2 ) M S E ( T y i s ) < M S E ( T s s i s )
h = 1 L W h 2 Y ¯ h 2 1 P i h 2 Q i h < h = 1 L W h 2 Y ¯ h 2 1 ( F i h J i h 2 + G i h I i h 2 2 H i h I i h J i h ) ( F i h G i h H i h 2 ) M S E ( T y i s ) < M S E ( T u s )
h = 1 L W h 2 Y ¯ h 2 1 P i h 2 Q i h < h = 1 L W h 2 Y ¯ h 2 U 0 U 10 2 U 1
M S E ( T y i s ) < M S E ( T m m i s )
h = 1 L W h 2 Y ¯ h 2 1 P i h 2 Q i h < h = 1 L W h 2 Y ¯ h 2 ( U 0 + λ i h 2 U 1 2 λ i h U 10 ) M S E ( T y i s ) < M S E ( T m m s )
h = 1 L W h 2 Y ¯ h 2 1 P i h 2 Q i h < h = 1 L W h 2 Y ¯ h 2 ( k h * 1 ) 2 + U 0 + k h * 2 U 1 2 k h * U 10 M S E ( T y i s ) < M S E ( T s k t s )
h = 1 L W h 2 Y ¯ h 2 1 P i h 2 Q i h < h = 1 L W h 2 Y ¯ h 2 ( U 0 + P t U 1 2 2 P t U 10 )
If conditions (85) to (98) satisfy, then the proposed separate estimators dominate the existing separate estimators brushed up in Section 2.2.

4.3. Comparison of Proposed Combined and Separate Estimators

We compare the minimum MSE of the proposed combined and separate classes of estimators T y i c and T y i s , i = 1 , 2 , , 6 as
m i n M S E ( T y i c ) m i n M S E ( T y i s ) = h = 1 L ( Y ¯ 2 W h 2 Y ¯ h 2 ) Y ¯ 2 P i 2 Q i W h 2 Y ¯ h 2 P i h 2 Q i h
In this case, if the proposed combined and separate estimators are valid and the relationship between the variables X and Y within each stratum is a straight line that passes through origin, then the last term of (99) is usually small and it vanishes.
Additionally, unless R h is invariant from stratum to stratum, separate estimator probably become more efficient in each stratum whether the sample in every stratum is adequately substantial such that the estimated expression of M S E ( T y i s ) , i = 1 , 2 , , 6 is reasonable and the cumulative bias which can alter the proposed estimators is negligible, whereas the proposed combined estimators are to be preferably recommended with only a few samples in every stratum (see, [40]).

5. Empirical Study

An empirical study is performed in two subsections, the numerical study utilizing natural populations and the simulation study utilizing hypothetically drawn populations.

5.1. Numerical Study

We consider two real populations to exhibit the execution of the proposed estimators against the estimators brushed up in Section 2. The details of the population are discussed hereunder.
Population 1 [Source: [41], p. 208]: The number of refrigerators sold in the last summer is considered as the auxiliary variable X and the expected sale for the current summer is considered as study variable Y. The descriptive statistics are given in Table 1 for ready reference.
Population 2 [Source: [39]]: The number of production of apple is considered as study variable Y and the quantity of apple trees are considered as auxiliary variable X in 854 villages of Turkey in 1999. The data are collected from the regions of Turkey considered as stratum. The required statistics are given in Table 2 for ready reference.
By using the SRSS methodology discussed in the earlier section, we have quantified a stratified ranked set sample of size 9 units with set size 3 and number of cycles 3 from each stratum of both populations. Utilizing the above populations, the MSE and percent relative efficiency (PRE) of various combined and separate estimators T i regarding the sample mean estimator T m have been computed. The PRE is tabulated using the expression given hereunder.
P R E = M S E ( T m ) M S E ( T i ) × 100
The outcomes of the numerical study are exploited in Table 3 that demonstrate the superiority of the proposed classes of estimators over the reviewed estimators. Furthermore, to generalize these results, a simulation study is accomplished in the next section.

5.2. Simulation Study

Following [42], we have conducted a simulation study by utilizing some hypothetically drawn populations, such as Normal, Weibull, and Log-normal each of size N = 1200 with an auxiliary variable X and study variable Y whose values are produced by utilizing the model given hereunder.
Y i = 2.8 + ( 1 ρ x y 2 ) Y i * + ρ x y S y S x X i * and X i = 2.4 + X i *
where X i * and Y i * are the independent variates of certain distributions to design different populations with various amounts of coefficient of correlation ρ x y = 0.6, 0.7, 0.8, and 0.9 between the variables X and Y in each population. We have chosen different valuations of ρ x y to notice the deportment of the proposed classes of estimators. Now, each population is stratified into three equally disjoint strata and a ranked set sample of size 9 units with set size 3 and number of cycles 3 is drawn from each stratum by utilizing the sampling methodology described in Section 2. With 10,000 iterations, the MSE and PRE of the combined and separate estimators are tabulated regarding the sample mean estimator as
P R E = i = 1 10,000 ( T m Y ¯ ) 2 i = 1 10,000 ( T i Y ¯ ) 2 × 100
The simulation findings are reported from Table 4, Table 5, Table 6, Table 7, Table 8 and Table 9 that demonstrate the superiority of the proposed estimators against the reviewed estimators for reasonably chosen values of ρ x y .

6. Interpretation of Empirical Results

The clarification of the empirical results is given in the following points.
(i).
The results of the real populations displayed in Table 3 demonstrate the ascendancy of the proposed combined estimators T y i c , i = 1 , 2 , , 6 over the reviewed combined estimators, namely, conventional mean estimator T m c , classical ratio and regression estimators T r c and T β c , [31,35] type estimators T s g 1 c and T s g 2 c , [33,34] type estimators T k k 1 c and T k k 2 c , [32,36] type estimators T s v 1 c and T s v 2 c , [1] type estimator T s s 1 c , [2,4] type estimators T s s 2 c and T s s 3 c , [3] type estimator T u c , [9] estimators T m m i c , i = 1 , 2 , 3 , 4 , [38] estimator T m m c , and [14] estimators T s k t c , t = 1 , 3 .
(ii).
The results of normal population disclosed in Table 4 show the superiority of the proposed combined estimators T y i c , i = 2 , 5 over the existing combined estimators. Additionally, the proposed combined estimators T y i c , i = 1 , 3 , 4 , 6 are found to be fare efficient than most of the combined estimators existing till date but found to be less efficient than [34] type estimator T k k 2 c and [1] type estimator T s s 1 c . The similar interpretation can also be drawn from the results of Weibull population disclosed in Table 5.
(iii).
From the results of Log-normal population reported in Table 6, the ascendancy of the proposed combined estimators T y i c , i = 1 , 2 , , 6 can be observed over the existing combined estimators.
(iv).
From Table 3, Table 4, Table 5 and Table 6, the proposed combined class of estimators T y i c , i = 2 , 5 perform fare better among the proposed combined classes of estimators.
(v).
The similar conclusions, such as points (i) to (iv), can also be drawn regarding the proposed separate classes of estimators T y i s , i = 1 , 2 , , 6 from the results summarized in Table 3, Table 7, Table 8 and Table 9.
(vi).
From the results of Table 4 and Table 7 based on Normal population, the proposed separate estimators T y i s , i = 1 , 3 , 4 , 6 dominate the proposed combined estimators T y i c , i = 1 , 3 , 4 , 6 whereas, the proposed combined estimators T y i c , i = 2 , 5 surpass the proposed separate estimators T y i s , i = 2 , 5 .
(vii).
From the results of Table 3 consisting of the real populations and Table 5, Table 6, Table 8 and Table 9 consisting of the simulated Weibull and Log-normal populations, the proposed separate estimators T y i s , i = 1 , 2 , , 6 dominate the proposed combined estimators T y i c , i = 1 , 2 , , 6 .
(viii).
Moreover, from the results of Table 4, Table 5, Table 6, Table 7, Table 8 and Table 9, the PRE of the proposed combined and separate classes of estimators increases as the value of ρ x y from 0.6 to 0.9 over the successive increase of 0.1.
(ix).
The results of the numerical study using real populations, which are reported in Table 3 are also presented through the line diagrams given in Figure 1. The dominance of the proposed combined and separate estimators can easily be observed from Figure 1. As the PRE of the simulation results of Table 4, Table 5, Table 6, Table 7 and Table 8 also exhibit the same pattern and can be easily presented through line diagrams, if required.

7. Conclusions

This manuscript considers some improved classes of combined and separate difference and ratio type estimators for the population mean utilizing SRSS. Some prominent existing estimators, namely, the usual mean estimator, classical ratio estimator envisaged by [8], classical regression estimator suggested by [9,10] estimators, and [38] estimators are identified as the members of the proposed classes of estimators for particularly chosen values of optimizing scalars. The MSE expressions of the proposed combined and separate estimators have been reported to the first order of approximation. The efficiency conditions are determined under which the proposed classes of estimators surpass the reviewed estimators. Furthermore, an empirical study is carried out extensively by using some hypothetically drawn and real populations. The empirical findings are established to be highly rewarding by means of lesser MSE and greater PRE providing improvement over the contemporary estimators discussed till date under SRSS. Thus, the motivation of the study is justified.
On the lines of [8], the entire study can be reprized when the ranking is accomplished on the variable Y and the ranking of the variable X is imperfect.

Author Contributions

Conceptualization, S.B.; methodology, S.B. and A.K.; software, A.K.; validation, S.B. and A.K.; writing—original draft preparation, A.K.; writing—review and editing, U.S., A.I.A.-O. and I.M.A. All authors have read and agreed to the published version of the manuscript.

Funding

The research was funded by the Deanship of Scientific Research at King Khalid University through the Research Groups Program under grant number R.G.P.2/132/43.

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

The data that used in this study are available within the paper.

Acknowledgments

The authors thank and extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this research.

Conflicts of Interest

The authors declare no conflict of interest.

Appendix A

The MSE of the existing combined estimators are reported hereunder.
M S E ( T m c ) = Y ¯ 2 V 0 , 2
M S E ( T r c ) = Y ¯ 2 ( V 0 , 2 + V 2 , 0 2 V 1 , 1 )
M S E ( T β c ) = Y ¯ 2 V 0 , 2 + β 2 R 2 V 2 , 0 2 β R V 1 , 1
m i n M S E ( T β c ) = Y ¯ 2 V 0 , 2 V 1 , 1 2 V 2 , 0
M S E ( T s g 1 c ) = Y ¯ 2 ( λ s 1 ) 2 + λ s 2 V 0 , 2 V 1 , 1 2 V 2 , 0 + V 2 , 0 ( N + 1 ) 2
m i n M S E ( T s g 1 c ) = Y ¯ 2 1 λ ( o p t )
M S E ( T s v 1 c ) = Y ¯ 2 1 + λ 1 2 A 1 + λ 2 2 B 1 2 λ 1 λ 2 C 1 2 λ 1 D 1 + 2 λ 2 E 1
m i n M S E ( T s v 1 c ) = Y ¯ 2 1 B 1 D 1 2 + A 1 2 E 1 2 C 1 D 1 E 1 A 1 B 1 C 1 2
M S E ( T k k 1 c ) = Y ¯ 2 λ k 2 V 0 , 2 + α 2 υ 2 λ k 2 ( 2 g 2 + g ) λ k ( g 2 + g ) V 2 , 0 2 g α υ ( 2 λ k 2 λ k ) V 1 , 1 + ( λ k 1 ) 2
m i n M S E ( T k k 1 c ) = Y ¯ 2 1 A 2 4 B
M S E ( T k k 2 c ) = Y ¯ 2 + k 2 2 X ¯ 2 V 2 , 0 + k 1 2 Y ¯ 2 ( 1 + V 0 , 2 + 3 υ 2 V 2 , 0 4 υ V 1 , 1 ) 2 k 2 X ¯ Y ¯ υ V 2 , 0 2 k 1 Y ¯ 2 ( 1 + υ 2 V 2 , 0 υ V 1 , 1 ) + 2 k 1 k 2 X ¯ Y ¯ ( 2 υ V 2 , 0 V 1 , 1 )
m i n M S E ( T k k 2 c ) = Y ¯ 2 ( υ 2 V 2 , 0 1 ) ( V 2 , 0 V 0 , 2 V 1 , 1 2 ) υ 2 V 2 , 0 2 + V 1 , 1 2 V 2 , 0 ( 1 + V 0 , 2 )
M S E ( T s g 2 c ) = Y ¯ 2 ( d 1 1 ) 2 + Y ¯ 2 d 1 2 V 0 , 2 + V 2 , 0 ( N + 1 ) 2 2 V 1 , 1 ( N + 1 ) 2 d 1 Y ¯ 2 3 V 2 , 0 8 ( N + 1 ) 2 V 1 , 1 2 ( N + 1 ) + d 2 2 X ¯ 2 V 2 , 0 d 2 X ¯ Y ¯ V 2 , 0 ( N + 1 ) + 2 d 1 d 2 X ¯ Y ¯ V 2 , 0 ( N + 1 ) V 1 , 1
m i n M S E ( T s g 2 c ) = Y ¯ 2 1 V 2 , 0 4 ( N + 1 ) 2 1 V 2 , 0 8 ( N + 1 ) 2 2 1 + V 0 , 2 V 1 , 1 2 V 2 , 0
M S E ( T s v 2 c ) = Y ¯ 2 1 + A 2 Λ 1 2 + B 2 Λ 2 2 + 2 Λ 1 Λ 2 C 2 2 Λ 1 2 Λ 2 D 2
m i n M S E ( T s v 2 c ) = Y ¯ 2 1 ( A 2 D 2 2 + B 2 2 C 2 D 2 ) ( A 2 B 2 C 2 2 )
M S E ( T s s i c ) = Y ¯ 2 1 + F i κ i 2 + G i ψ i 2 + 2 κ i ψ i H i 2 κ i I i 2 ψ i J i
m i n M S E ( T s s i c ) = Y ¯ 2 1 ( F i J i 2 + G i I i 2 2 H i I i J i ) ( F i G i H i 2 ) , i = 1 , 2 , 3
M S E ( T u c ) = Y ¯ 2 V 0 , 2 + V 2 , 0 a 2 2 V 1 , 1 a
m i n M S E ( T u c ) = Y ¯ 2 V 0 , 2 V 1 , 1 2 V 2 , 0
M S E ( T m m i c ) = Y ¯ 2 ( V 0 , 2 + δ i 2 V 2 , 0 2 δ i V 1 , 1 ) ; i = 1 , 2 , 3 , 4
m i n M S E ( T m m c ) = Y ¯ 2 ( k * 1 ) 2 + V 0 , 2 + k * 2 V 2 , 0 2 k * V 1 , 1
M S E ( T s k t c ) = Y ¯ 2 V 0 , 2 + P t 2 V 2 , 0 2 2 P t V 1 , 1 ; t = 1 , 3
The optimum values of the scalars are subsequently reported hereunder.
β ( opt ) = R V 1 , 1 V 2 , 0 λ s ( opt ) = 1 1 + V 0 , 2 V 1 , 1 2 V 2 , 0 + V 2 , 0 ( N + 1 ) 2 λ 1 ( opt ) = ( B 1 D 1 C 1 E 1 ) ( A 1 B 1 C 1 2 ) λ 2 ( opt ) = ( C 1 D 1 A 1 E 1 ) ( A 1 B 1 C 1 2 ) λ k ( opt ) = α 2 υ 2 ( g 2 + g ) V 2 , 0 2 g α υ V 1 , 1 + 2 1 + V 0 , 2 + ( 2 g 2 + g ) α 2 υ 2 V 2 , 0 4 g α υ V 1 , 1 k 1 ( opt ) = V 2 , 0 ( 1 υ 2 V 2 , 0 ) V 0 , 2 V 2 , 0 + V 2 , 0 υ 2 V 2 , 0 2 V 1 , 1 2 k 2 ( opt ) = R υ + ( 1 υ 2 V 2 , 0 ) ( V 1 , 1 2 υ V 2 , 0 ) V 2 , 0 + V 0 , 2 V 2 , 0 V 1 , 1 2 υ 2 V 2 , 0 2 d 1 ( opt ) = 1 V 2 , 0 8 ( N + 1 ) 2 1 + V 0 , 2 V 1 , 1 2 V 2 , 0 d 2 ( opt ) = Y ¯ X ¯ 1 2 ( N + 1 ) d 1 1 ( N + 1 ) V 1 , 1 V 2 , 0 Λ 1 ( opt ) = ( B 2 C 2 D 2 ) ( A 2 B 2 C 2 2 ) Λ 2 ( opt ) = ( A 2 D 2 C 2 ) ( A 2 B 2 C 2 2 ) κ i ( opt ) = ( G i I i H i J i ) ( F i G i H i 2 ) ψ i ( opt ) = ( H i I i F i J i ) ( F i G i H i 2 ) , i = 1 , 2 , 3 a ( opt ) = R β ( opt ) = V 2 , 0 V 1 , 1 k ( opt ) = 1 + V 1 , 1 1 + V 0 , 2 = k *
where,
R = Y ¯ X ¯ A 1 = 1 + V 0 , 2 + α V 2 , 0 ( N a + 1 ) ( 2 α 1 ) ( N a + 1 ) + 4 K h ; B 1 = β R 2 V 2 , 0 C 1 = β R V 2 , 0 2 α ( N a + 1 ) + K h + d h D 1 = 1 + α V 2 , 0 ( N a + 1 ) ( α 1 ) 2 ( N a + 1 ) + K h E 1 = β R α V 2 , 0 ( N a + 1 ) + β R h = 1 L W h 2 γ h d h d h = ( a h * μ 21 a h μ 30 ) X ¯ K h = V 1 , 1 V 2 , 0 μ r s = 1 N h j = 1 N h ( y h j Y ¯ ) r ( x h j X ¯ ) s
a h = N h 2 W h γ h ( N h 1 ) ( N h 2 ) X ¯ 2 V 2 , 0 a h * = N h 2 W h γ h ( N h 1 ) ( N h 2 ) X ¯ Y ¯ V 1 , 1 A = 2 + ( g 2 + g ) α 2 υ 2 V 2 , 0 2 g α υ V 1 , 1 B = 1 + V 0 , 2 + ( 2 g 2 + g ) α 2 υ 2 V 2 , 0 4 g α υ V 1 , 1 A 2 = 1 + V 0 , 2 B 2 = A 2 + β ( 2 β 1 ) υ 2 V 2 , 0 + 4 υ β V 1 , 1 C 2 = A 2 + β ( β 1 ) 2 υ 2 V 2 , 0 + 2 β υ V 1 , 1 D 2 = 1 + β ( β 1 ) 2 υ 2 V 2 , 0 + β υ V 1 , 1 F 1 = 1 + V 0 , 2 + 4 α δ υ V 1 , 1 + δ ( 2 δ 1 ) α 2 υ 2 V 2 , 0 G 1 = 1 + V 0 , 2 4 g α υ V 1 , 1 + g ( 2 g + 1 ) α 2 υ 2 V 2 , 0 H 1 = 1 + V 0 , 2 + 2 α ( δ g ) υ V 1 , 1 + ( α 2 υ 2 / 2 ) ( δ g ) ( δ g 1 ) V 2 , 0 I 1 = 1 + α δ υ V 1 , 1 + δ ( δ + 1 ) 2 α 2 υ 2 V 2 , 0 J 1 = 1 α g υ V 1 , 1 + g ( g + 1 ) 2 α 2 υ 2 V 2 , 0 F 2 = 1 + V 0 , 2 + α 2 υ 2 ( 2 g 2 + g ) V 2 , 0 4 α υ g V 1 , 1 G 2 = 1 + V 0 , 2 + υ 2 ( δ 2 + δ ) 2 V 2 , 0 2 δ υ V 1 , 1 H 2 = 1 + V 0 , 2 + A * υ 2 8 V 2 , 0 υ ( 2 α g + δ ) V 1 , 1 I 2 = 1 + α 2 υ 2 ( g 2 + g ) 2 V 2 , 0 α υ g V 1 , 1
J 2 = 1 + ( δ 2 + 2 δ ) 8 υ 2 V 2 , 0 ( δ υ ) 2 V 1 , 1 A * = ( 2 α g + δ ) 2 + 2 ( 2 α 2 g + δ ) F 3 = 1 + V 0 , 2 2 Θ 1 a V 1 , 1 + Θ 1 ( Θ 1 + 1 ) 2 a 2 V 2 , 0 G 3 = 1 + V 0 , 2 + 2 Θ 2 a V 1 , 1 + Θ 2 ( Θ 2 1 ) 2 a 2 V 2 , 0 H 3 = 1 + V 0 , 2 + ( Θ 2 Θ 1 ) a V 1 , 1 + 1 8 ( Θ 2 Θ 1 ) ( Θ 2 Θ 1 2 ) a 2 V 2 , 0 I 3 = 1 Θ 1 2 a V 1 , 1 ( Θ 1 + 2 ) 4 a 2 V 2 , 0 J 3 = 1 Θ 2 2 a V 1 , 1 + ( Θ 2 2 ) 4 a 2 V 2 , 0 Θ 1 = 2 α + β Θ 2 = 2 η + δ δ 1 = h = 1 L W h X ¯ h h = 1 L W h ( X ¯ h + C x x h ) δ 2 = h = 1 L W h X ¯ h h = 1 L W h ( X ¯ h + β 2 ( x h ) ) δ 3 = h = 1 L W h X ¯ h β 2 ( x h ) h = 1 L W h ( X ¯ h β 2 ( x h ) + C x h ) δ 4 = h = 1 L W h X ¯ h C x h h = 1 L W h ( X ¯ h C x h + β 2 ( x h ) ) P t = 2 Y ¯ X ¯ + q t ( 2 X ¯ + q t ) 2 υ = a X ¯ ( a X ¯ + b )

Appendix B

This section considers the MSE and optimum values of the existing separate estimators.
M S E ( T m s ) = h = 1 L W h 2 Y ¯ h 2 U 0
M S E ( T r s ) = h = 1 L W h 2 Y ¯ h 2 ( U 0 + U 1 2 U 10 )
M S E ( T β s ) = h = 1 L W h 2 Y ¯ h 2 U 0 + β h 2 R h 2 U 1 2 β h R h U 10
m i n M S E ( T β s ) = h = 1 L W h 2 Y ¯ h 2 U 0 U 10 2 U 1
M S E ( T s g 1 s ) = h = 1 L W h 2 Y ¯ h 2 ( λ s h 1 ) 2 + λ s h 2 U 0 U 10 2 U 1 + U 1 ( N + 1 ) 2
m i n M S E ( T s g 1 s ) = h = 1 L W h 2 Y ¯ h 2 1 λ s h ( o p t )
M S E ( T s v 1 s ) = h = 1 L W h 2 Y ¯ h 2 1 + λ 1 h 2 A 1 + λ 2 h 2 B 1 h 2 λ 1 h λ 2 h C 1 h 2 λ 1 h D 1 h + 2 λ 2 h E 1 h
m i n M S E ( T s v 1 s ) = h = 1 L W h 2 Y ¯ h 2 1 ( B 1 h D 1 h 2 + A 1 h 2 E 1 h 2 C 1 h D 1 h E 1 h ) ( A 1 h B 1 h C 1 h 2 )
M S E ( T k k 1 s ) = h = 1 L W h 2 Y ¯ h 2 λ k h 2 U 0 + α h 2 υ h 2 λ k h 2 ( 2 g 2 + g ) λ k h ( g 2 + g ) U 1 2 g α h υ h ( 2 λ k h 2 λ k h ) U 10 + ( λ k h 1 ) 2
m i n M S E ( T k k 1 s ) = h = 1 L W h 2 Y ¯ h 2 1 A h 2 4 B h
M S E ( T k k 2 s ) = h = 1 L W h 2 Y ¯ h 2 + k 2 h 2 X ¯ h 2 U 1 + k 1 h 2 Y ¯ h 2 ( 1 + U 0 + 3 υ h 2 U 1 4 υ h U 10 ) 2 k 2 h X ¯ h Y ¯ h υ h U 1 2 k 1 h Y ¯ h 2 ( 1 + υ h 2 U 1 υ h U 10 ) + 2 k 1 h k 2 h X ¯ h Y ¯ h ( 2 υ h U 1 U 10 )
m i n M S E ( T k k 2 s ) = h = 1 L W h 2 Y ¯ h 2 ( υ h 2 U 1 1 ) ( U 1 U 0 U 10 2 ) υ h 2 U 1 2 + U 10 2 U 1 ( 1 + U 0 )
M S E ( T s g 2 s ) = h = 1 L W h 2 Y ¯ h 2 ( d 1 h 1 ) 2 + Y ¯ h 2 d 1 h 2 U 0 + U 1 ( N + 1 ) 2 2 U 10 ( N + 1 ) 2 d 1 h Y ¯ h 2 3 U 1 8 ( N + 1 ) 2 U 10 2 ( N + 1 ) + d 2 h 2 X ¯ h 2 U 1 d 2 X ¯ h Y ¯ h U 1 ( N + 1 ) + 2 d 1 h d 2 h X ¯ h Y ¯ h U 1 ( N + 1 ) U 10
m i n M S E ( T s g 2 s ) = h = 1 L W h 2 Y ¯ h 2 1 U 1 4 ( N + 1 ) 2 1 U 1 8 ( N + 1 ) 2 2 1 + U 0 U 10 2 U 1
M S E ( T s v 2 s ) = h = 1 L W h 2 Y ¯ h 2 1 + A 2 h Λ 1 h 2 + B 2 h Λ 2 h 2 + 2 Λ 1 h Λ 2 h C 2 h 2 Λ 1 h 2 Λ 2 h D 2 h
m i n M S E ( T s v 2 s ) = h = 1 L W h 2 Y ¯ h 2 1 ( A 2 h D 2 h 2 + B 2 h 2 C 2 h D 2 h ) ( A 2 h B 2 h C 2 h 2 )
M S E ( T s s i s ) = h = 1 L W h 2 Y ¯ h 2 1 + F i h κ i h 2 + G i h ψ i h 2 + 2 κ i h ψ i h H i h 2 κ i h I i h 2 ψ i h J i h
m i n M S E ( T s s i s ) = h = 1 L W h 2 Y ¯ h 2 1 ( F i h J i h 2 + G i h I i h 2 2 H i h I i h J i h ) ( F i h G i h H i h 2 ) , i = 1 , 2 , 3
M S E ( T u s ) = h = 1 L W h 2 Y ¯ h 2 U 0 + U 1 a h 2 2 U 10 a h
m i n M S E ( T u s ) = h = 1 L W h 2 Y ¯ h 2 U 0 U 10 2 U 1
M S E ( T m m i s ) = h = 1 L W h 2 Y ¯ h 2 U 0 + δ i h 2 U 1 2 δ i h U 10 ; i = 1 , 2 , 3 , 4
m i n M S E ( T m m s ) = h = 1 L W h 2 Y ¯ h 2 ( k h * 1 ) 2 + U 0 + k h * 2 U 1 2 k h * U 10
M S E ( T s k t s ) = h = 1 L W h 2 Y ¯ h 2 U 0 + P t h 2 U 1 2 2 P t h U 10
The optimum values of the scalars of existing separate estimators are, respectively, given below.
β h ( opt ) = R h U 10 U 1 λ s h ( opt ) = 1 1 + U 0 U 10 2 U 1 + U 1 ( N + 1 ) 2 λ 1 h ( opt ) = ( B 1 h D 1 h C 1 h E 1 h ) ( A 1 h B 1 h C 1 h 2 ) λ 2 h ( opt ) = ( C 1 h D 1 h A 1 h E 1 h ) ( A 1 h B 1 h C 1 h 2 ) λ k h ( opt ) = α h 2 υ h 2 ( g 2 + g ) U 1 2 g α h υ h U 10 + 2 1 + U 0 + ( 2 g 2 + g ) α h 2 υ h 2 U 1 4 g α h υ h U 10 k 1 h ( opt ) = U 1 ( 1 υ h 2 U 1 ) U 0 U 1 + U 1 υ h 2 U 1 2 U 10 2 k 2 h ( opt ) = R h υ h + ( 1 υ h 2 U 1 ) ( U 10 2 υ h U 1 ) U 1 + U 0 U 1 U 10 2 υ h 2 U 1 2 d 1 h ( opt ) = 1 U 1 8 ( N h + 1 ) 2 1 + U 0 U 10 2 U 1 d 2 h ( opt ) = Y ¯ h X ¯ h 1 2 ( N h + 1 ) d 1 h 1 ( N h + 1 ) U 10 U 1 Λ 1 h ( opt ) = ( B 2 h C 2 h E 2 h ) ( A 2 h B 2 h C 2 h 2 ) Λ 2 h ( opt ) = ( A 2 h E 2 h C 2 h ) ( A 2 h B 2 h C 2 h 2 ) κ i h ( opt ) = ( G i h I i h H i h J i h ) ( F i h G i h H i h 2 ) ψ i h ( opt ) = ( H i h I i h F i h J i h ) ( F i h G i h H i h 2 ) , i = 1 , 2 , 3 a h ( opt ) = R h β h ( o p t ) = U 1 U 10 k h ( opt ) = 1 + U 10 1 + U 0 = k h *
where
A 1 h = 1 + U 0 + α h U 1 ( N h a + 1 ) ( 2 α h 1 ) ( N h a + 1 ) + 4 K h B 1 h = β h R h 2 U 1 C 1 h = β h R h U 1 2 α h ( N h a + 1 ) + K h + d h D 1 h = 1 + α h U 1 ( N h a + 1 ) ( α h 1 ) 2 ( N h a h + 1 ) + K h E 1 h = β h R h α h U 1 ( N h a h + 1 ) + h = 1 L W h 2 γ h d h d h = ( a h * μ 21 h a h μ 30 h ) X ¯ h K h = U 10 U 1 μ r s h = 1 N h j = 1 N h ( y h j Y ¯ h ) r ( x h j X ¯ ) s a h = N h 2 W h γ h ( N h 1 ) ( N h 2 ) X ¯ 2 U 1 a h * = N h 2 W h γ h ( N h 1 ) ( N h 2 ) X ¯ h Y ¯ h U 10 A h = 2 + ( g 2 + g ) α h 2 υ h 2 U 1 2 g α h υ h U 10 B h = 1 + U 0 + ( 2 g 2 + g ) α h 2 υ h 2 U 1 4 g α h υ h U 10 A 2 h = 1 + U 0 B 2 h = A 2 h + β ( 2 β 1 ) υ h 2 U 1 + 4 υ h β U 10 C 2 h = A 2 h + β ( β 1 ) 2 υ h 2 U 1 + 2 β υ h U 10 D 2 h = 1 + β ( β 1 ) 2 υ h 2 U 1 + β υ h U 10 F 1 h = 1 + U 0 + 4 α h δ υ h U 10 + δ ( 2 δ 1 ) α h 2 υ h 2 U 1 G 1 h = 1 + U 0 4 g α h υ h U 10 + g ( 2 g + 1 ) α h 2 υ h 2 U 1 H 1 h = 1 + U 0 + 2 α h ( δ g ) υ h U 10 + α h 2 υ h 2 2 ( δ g ) ( δ g 1 ) U 1 I 1 h = 1 + α h δ υ h U 10 + δ ( δ + 1 ) 2 α h 2 υ h 2 U 1 J 1 h = 1 α h g υ h U 10 + g ( g + 1 ) 2 α h 2 υ h 2 U 1 F 2 h = 1 + U 0 + α h 2 υ h 2 ( 2 g 2 + g ) U 1 4 α h υ h g U 10 G 2 h = 1 + U 0 + υ h 2 ( δ 2 + δ ) 2 U 1 2 δ υ h U 10 H 2 h = 1 + U 0 + A h * υ h 2 8 U 1 υ h ( 2 α h g + δ ) U 10 I 2 h = 1 + α h 2 υ h 2 ( g 2 + g ) 2 U 1 α h υ h g U 10 J 2 h = 1 + ( δ 2 + 2 δ ) 8 υ h 2 U 1 δ υ h 2 U 10
A h * = ( 2 α h g + δ ) 2 + 2 ( 2 α h 2 g + δ ) F 3 h = 1 + U 0 2 Θ 1 h a h U 10 + Θ 1 h ( Θ 1 h + 1 ) 2 a h 2 U 1 G 3 h = 1 + U 0 + 2 Θ 2 h a h U 10 + Θ 2 h ( Θ 2 h 1 ) 2 a h 2 U 1 H 3 h = 1 + U 0 + ( Θ 2 h Θ 1 h ) a h U 10 + ( Θ 2 h Θ 1 h ) ( Θ 2 h Θ 1 h 2 ) 8 a h 2 U 1 I 3 h = 1 Θ 1 h 2 a h U 10 ( Θ 1 h + 2 ) 4 a h 2 U 1 J 3 h = 1 Θ 2 h 2 a h U 10 + ( Θ 2 h 2 ) 4 a h 2 U 1 Θ 1 h = 2 α h + β h Θ 2 h = 2 η + δ δ 1 h = X ¯ h ( X ¯ h + C x x h ) δ 2 h = X ¯ h ( X ¯ h + β 2 ( x h ) ) δ 3 h = X ¯ h β 2 ( x h ) ( X ¯ h β 2 ( x h ) + C x h ) δ 4 h = X ¯ h C x h ( X ¯ h C x h + β 2 ( x h ) ) P t h = 2 Y ¯ h X ¯ h + q t h ( 2 X ¯ h + q t h ) 2 υ h = a h X ¯ h a h X ¯ h + b h

Appendix C

The outline of the derivation of Theorem 1 and Corollary 1 are considered in the present section.
Consider the first separate estimator
T y 1 s = h = 1 L W h ( α 1 h y ¯ h [ rss ] + β 1 h ( x ¯ h ( rss ) X ¯ h ) )
Utilizing the notations discussed in Section 1, we write the combined estimator T y 1 c as
T y 1 c Y ¯ = ( α 1 1 ) Y ¯ + α 1 Y ¯ ϵ 0 + β 1 X ¯ ϵ 1
Now, squaring and taking expectation both sides of (A47), we obtain
M S E ( T y 1 c ) = Y ¯ 2 ( ( α 1 1 ) 2 + α 1 2 V 0 , 2 + X ¯ 2 Y ¯ 2 β 1 2 V 2 , 0 + 2 X ¯ Y ¯ α 1 β 1 V 1 , 1 )
The optimum values of α 1 and β 1 can be obtained by minimizing (A48) regarding α 1 and β 1 as
α 1 ( opt ) = 1 1 + V 0 , 2 V 1 , 1 2 V 2 , 0 = P 1 Q 1
β 1 ( opt ) = Y ¯ X ¯ V 1 , 1 V 2 , 0 α 1 ( opt )
Putting α 1 ( opt ) and β 1 ( opt ) in (A48), we obtain
m i n M S E ( T y 1 c ) = Y ¯ 2 ( 1 α 1 ( opt ) ) = Y ¯ 2 1 P 1 2 Q 1
Likewise, we can determine the MSE of other estimators T y i , i = 2 , 3 , 5 , 6 as
M S E ( T y i c ) = Y ¯ 2 ( 1 + α i 2 P i 2 α i Q i )
The optimum values of the scalars are reported hereunder.
α i ( opt ) = P i Q i ; i = 2 , 3 , 5 , 6 β 2 ( opt ) = V 1 , 1 V 2 , 0 β 3 ( opt ) = β 2 ( opt ) β 4 ( opt ) = β 1 ( opt ) υ β 5 ( opt ) = β 2 ( opt ) υ = β 6 ( opt )
where
Q 2 = 1 + V 0 , 2 + V 1 , 1 2 V 1 , 1 2 V 2 , 0 P 2 = 1 + V 1 , 1 2 V 1 , 1 2 2 V 2 , 0 Q 3 = 1 + V 0 , 2 V 1 , 1 2 V 2 , 0 = Q 4 = Q 6 P 3 = 1 = P 4 = P 6 Q 5 = 1 + V 0 , 2 + υ V 1 , 1 2 V 1 , 1 2 V 2 , 0 P 5 = 1 + υ V 1 , 1 2 V 1 , 1 2 2 V 2 , 0

Appendix D

The outline of the derivation of Theorem 2 and Corollary 2 are reported hereunder.
Utilizing the notations discussed in Section 1, we express the separate estimator T y 1 s as
T y 1 s h = 1 L W h Y ¯ h = h = 1 L W h ( ( α 1 h 1 ) Y ¯ h + α 1 h Y ¯ h ϵ 0 h + β 1 h X ¯ h ϵ 1 h )
Now, squaring and taking expectation both sides of (A53), we obtain
M S E ( T y 1 s ) = h = 1 L W h 2 Y ¯ h 2 ( α 1 h 1 ) 2 + α 1 h 2 U 0 + X ¯ h 2 Y ¯ h 2 β 1 h 2 U 1 + 2 X ¯ h Y ¯ h α 1 h β 1 h U 10
The optimum values of α 1 h and β 1 h can be obtained by minimizing (A54) regarding α 1 h and β 1 h as
α 1 h ( opt ) = 1 1 + U 0 U 10 2 U 1 = P 1 h Q 1 h
β 1 h ( opt ) = Y ¯ h X ¯ h U 10 U 1 α 1 h ( opt )
Putting α 1 ( opt ) and β 1 ( opt ) in (A54), we obtain
m i n M S E ( T y 1 s ) = h = 1 L W h Y ¯ h 2 ( 1 α 1 h ( opt ) ) = h = 1 L W h Y ¯ h 2 1 P 1 h 2 Q 1 h
Similarly, we can obtain the MSE of other estimators T y i s , i = 2 , 3 , 5 , 6 as
M S E ( T y i s ) = h = 1 L W h Y ¯ h 2 1 + α i h 2 P i h 2 α i h Q i h
The optimum values of the constants are tabulated hereunder.
α i h ( opt ) = P i h Q i h ; i = 2 , 3 , 5 , 6 β 2 h ( opt ) = U 10 U 1 = β 3 h ( opt ) β 4 h ( opt ) = β 1 h ( opt ) υ h β 5 h ( opt ) = U 10 υ h U 1 = β 6 h ( opt )
where
Q 2 h = 1 + U 0 + U 10 2 U 10 2 U 1 P 2 h = 1 + U 10 2 U 10 2 2 U 1 Q 3 h = 1 + U 0 U 10 2 U 1 = Q 4 h = Q 6 h P 3 h = 1 = P 4 h = P 6 h Q 5 h = 1 + U 0 + υ h U 10 2 U 10 2 U 1 P 5 h = 1 + υ h U 10 2 U 10 2 2 U 1

References

  1. Singh, H.P.; Solanki, R.S. Efficient ratio and product estimators in stratified random sampling. Commun. Stat. Theory Methods 2013, 42, 1008–1023. [Google Scholar] [CrossRef]
  2. Solanki, R.S.; Singh, H.P. An efficient class of estimators for the population mean using auxiliary information in stratified random sampling. Commun. Stat. Theory Methods 2014, 43, 3380–3401. [Google Scholar] [CrossRef]
  3. Yadav, R.; Upadhyaya, L.N.; Singh, H.P.; Chatterjee, S. Improved ratio and product exponential type estimators for finite population mean in stratified random sampling. Commun. Stat. Theory Methods 2014, 43, 3269–3285. [Google Scholar] [CrossRef]
  4. Solanki, R.S.; Singh, H.P. An improved estimation in stratified random sampling. Commun. Stat. Theory Methods 2016, 45, 2056–2070. [Google Scholar] [CrossRef]
  5. Bhushan, S.; Kumar, A.; Singh, S. Some efficient classes of estimators under stratified sampling. Commun. Stat. Theory Methods 2021, 1–30. [Google Scholar] [CrossRef]
  6. McIntyre, G.A. A method of unbiased selective sampling using ranked set. Aust. J. Agric. Res. 1952, 3, 385–390. [Google Scholar] [CrossRef]
  7. Samawi, H.M. Stratified ranked set sampling. Pak. J. Stat. 1996, 12, 9–16. [Google Scholar]
  8. Samawi, H.M.; Siam, M.I. Ratio estimation using stratified ranked set sampling. Metron 2003, 61, 75–90. [Google Scholar]
  9. Mandowara, V.L.; Mehta, N. Modified ratio estimators using stratified ranked set sampling. Hacet. J. Math. Stat. 2014, 43, 461–471. [Google Scholar]
  10. Linder, D.F.; Samawi, H.; Yu, L.; Chatterjee, A.; Huang, Y.; Vogel, R. On stratified bivariate ranked set sampling for regression estimators. J. Appl. Stat. 2015, 42, 2571–2583. [Google Scholar] [CrossRef]
  11. Khan, L.; Shabbir, J. Hartley-Ross type unbiased estimators using ranked set sampling and stratified ranked set sampling. North Carol. J. Math. Stat. 2016, 2, 10–22. [Google Scholar]
  12. Yu, L.; Samawi, H.; Linder, D.; Chatterjee, A.; Huang, Y.; Vogel, R. On stratified bivariate ranked set sampling with optimal allocation for naïve and ratio estimators. J. Appl. Stat. 2017, 44, 457–473. [Google Scholar] [CrossRef]
  13. Chatterjee, A.; Samawi, H.; Yu, L.; Linder, D.; Cai, J.; Vogel, R. On regression estimators for different stratified sampling schemes. J. Stat. Manag. Syst. 2017, 20, 1147–1165. [Google Scholar] [CrossRef]
  14. Saini, M.; Kumar, A. Ratio estimators using stratified random sampling and stratified ranked set sampling. Life Cycle Relia. Safe. Eng. 2018, 84, 931–945. [Google Scholar] [CrossRef]
  15. Ibrahim, K.; Syam, M.; Al-Omari, A.I. Estimating the population mean using stratified median ranked set sampling. Appl. Math. Sci. 2010, 4, 2341–2354. [Google Scholar]
  16. Al-Omari, A.I.; Syam, M.; Ibrahim, K. Investigating the use of stratified percentile ranked set sampling method for estimating the population mean. Proyecciones J. Math. 2011, 30, 351–368. [Google Scholar] [CrossRef]
  17. Al-Omari, A.I. Ratio estimation of population mean using auxiliary information in simple random sampling and median ranked set sampling. Stat. Probab. Lett. 2012, 82, 1883–1990. [Google Scholar] [CrossRef]
  18. Bhushan, S.; Kumar, A. Novel log type class of estimators under ranked set sampling. Sankhya B 2022, 84, 421–447. [Google Scholar] [CrossRef]
  19. Cetin, A.E.; Koyuncu, N. Estimation of population mean under different stratified ranked set sampling designs with simulation study application to BMI data. Commun. Fac. Sci. 2020, 69, 560–575. [Google Scholar] [CrossRef]
  20. Samawai, H.M.; Saeid, L.J. Stratified extreme ranked set sample with application to ratio estimators. J. Mod. Appl. Stat. Methods 2004, 3, 117–133. [Google Scholar] [CrossRef]
  21. Khan, L.; Shabbir, J.; Gupta, S. Unbiased ratio estimators of the mean in stratified ranked set sampling. Hacet. J. Math. Stat. 2016, 46, 1151–1158. [Google Scholar] [CrossRef]
  22. Syam, M.; Ibrahim, K.; Al-Omari, A.I. Stratified double quartile ranked set samples. J. Math. Syst. Sci. 2013, 4, 49–55. [Google Scholar]
  23. Bhushan, S.; Kumar, A.; Lone, S.A. On some novel classes of estimators under ranked set sampling. AEJ-Alex. Eng. J. 2021, 61, 5465–5474. [Google Scholar] [CrossRef]
  24. Bhushan, S.; Kumar, A. Predictive estimation approach using difference and ratio type estimators in ranked set sampling. J. Compu. App. Math. 2022. [Google Scholar] [CrossRef]
  25. Bhushan, S.; Kumar, A. On optimal classes of estimators under ranked set sampling. Commun. Stat. Theory Methods 2022, 51, 2610–2639. [Google Scholar] [CrossRef]
  26. Maciak, M.; Pesta, M. and Pestova, M. Changepoint in dependent and non-stationary panels. Stat. Pap. 2020, 61, 1385–1407. [Google Scholar] [CrossRef]
  27. Arcos, A.; Cobo, B.; Rueda, M.M. Selection and estimation in ranked set sampling using R. In Ranked Set Sampling; Academic Press: Cambridge, MA, USA, 2019; pp. 269–279. [Google Scholar] [CrossRef]
  28. Bouza-Herrera, C.N. Stratified Ranked Set Sampling With Missing Observations for Estimating the Difference. In Ranked Set Sampling Models and Methods; IGI Global: Hershey, PA, USA, 2022; pp. 209–232. [Google Scholar]
  29. Arnold, B.C.; Balakrishnan, N.; Nagaraja, H.N. A First Course in Order Statistics; John Wiley: New York, NY, USA, 1993. [Google Scholar]
  30. Dell, T.R.; Clutter, J.L. Ranked set sampling theory with order statistics background. Biometrics 1972, 28, 545–555. [Google Scholar] [CrossRef]
  31. Shabbir, J.; Gupta, S. A new estimator of population mean in stratified sampling. Commun. Stat. Theory Methods 2006, 35, 1201–1209. [Google Scholar] [CrossRef]
  32. Singh, H.P.; Vishwakarma, G.K. A family of estimators of population mean using auxiliary information in stratified sampling. Commun. Stat. Theory Methods 2008, 37, 1038–1050. [Google Scholar] [CrossRef]
  33. Koyuncu, N.; Kadilar, C. Ratio and product estimators in stratified random sampling. J. Stat. Plan. Inference 2009, 139, 2552–2558. [Google Scholar] [CrossRef]
  34. Koyuncu, N.; Kadilar, C. On improvement in estimating population mean in stratified random sampling. J. Appl. Stat. 2010, 37, 999–1013. [Google Scholar] [CrossRef]
  35. Shabbir, J.; Gupta, S. On estimating finite population mean in simple and stratified random sampling. Commun. Stat. Theory Methods 2010, 40, 199–212. [Google Scholar] [CrossRef]
  36. Singh, H.P.; Vishwakarma, G.K. A general procedure for estimating the population mean in stratified sampling using auxiliary information. Metron 2010, 68, 47–65. [Google Scholar] [CrossRef]
  37. Kadilar, C.; Cingi, H. Ratio estimator in stratified sampling. Biom. J. 2003, 45, 218–225. [Google Scholar] [CrossRef]
  38. Mehta, N.; Mandowara, V.L. Advanced estimator in stratified ranked set sampling using auxiliary information. Int. J. Appl. Math. Stat. Scie 2016, 5, 37–46. [Google Scholar]
  39. Kadilar, C.; Cingi, H. A new ratio estimator in stratified random sampling. Commun. Stat. Theory Methods 2005, 34, 597–602. [Google Scholar] [CrossRef]
  40. Cochran, W.G. Sampling Techniques; John Wiley and Sons: New York, NY, USA, 1977. [Google Scholar]
  41. Singh, R.; Mangat, N.S. Elements of Survey Sampling; Kluwer Academic: Boston, MA, USA, 1996. [Google Scholar]
  42. Singh, H.P.; Horn, S. An alternative estimator for multi-character surveys. Metrika 1998, 48, 99–107. [Google Scholar]
Figure 1. PRE of the combined and separate estimators for real populations.
Figure 1. PRE of the combined and separate estimators for real populations.
Mathematics 10 03283 g001
Table 1. Population 1 summaries.
Table 1. Population 1 summaries.
TotalStratum h1234
Population mean X ¯ = 85,838 X ¯ h 72.0855.873.066.1
Population mean Y ¯ = 70.02 Y ¯ h 79.459.476.764.6
Kurtosis coefficient β 2 ( x ) = 0.8678 β 2 ( x h ) 0.69400.83610.97560.9655
Correlation coefficient ρ x y = 0.8673 ρ x y h 0.78100.88910.90040.8990
Variation coefficient C x = 0.206 C x h 0.19060.24160.2010.1908
Standard deviation S x = 13.684 S x h 14.5299.85313.89212.161
Standard deviation S y = 13.584 S y h 12.91113.20215.05313.061
Population sizeN = 1254 N 1 400216364274
Table 2. Population 2 summaries.
Table 2. Population 2 summaries.
TotalStratum h123456
Population mean X ¯ = 37,600 X ¯ h 24,37527,42172,40974,36526,4419844
Population mean Y ¯ = 2930 Y ¯ h 1536221293845588967404
Kurtosis coefficient β 2 ( x ) = 312.07 β 2 ( x h ) 25.7134.5726.1497.6027.4728.10
Correlation coefficient ρ x y = 0.92 ρ x y h 0.820.860.90.990.710.89
Variation coefficient C x = 3.8509 C x h 2.01802.09552.22013.84041.71711.9091
Standard deviation S x = 144,794 S x h 49,18957,461160,757285,60345,40318,794
Standard deviation S y = 17,106 S y h 642511,55229,90728,6432390946
Population sizeN = 854 N h 10610694171204173
Table 3. MSE and PRE of combined and separate estimators utilizing real populations.
Table 3. MSE and PRE of combined and separate estimators utilizing real populations.
CombinedPopulation 1Population 2SeparatePopulation 1Population 2
EstimatorsMSEPREMSEPREEstimatorsMSEPREMSEPRE
T m c 1219.90310043,839.760100 T m s 1211.20110043.829.561100
T r c 416.7812928491.407516 T r s 411.6182948476.984517
T β c / T u c 27.99543578410.157521 T β s / T u s 27.78143598396.054522
T s g 1 c 36.76033183110.7171409 T s g 1 s 36.48033203106.1521411
T s v 1 c 27.84643803187.7731375 T s v 1 s 27.63643823181.9801377
T k k 1 c 416.5242924901.103894 T k k 1 s 414.6482924891.648896
T k k 2 c 27.99543578414.176521 T k k 2 s 27.78943588401.425521
T s g 2 c 27.89643723543.5751237 T s g 2 s 27.69043743536.5861239
T s v 2 c 27.84643823187.7731375 T s v 2 s 27.62143853183.1241376
T s s 1 c 27.99543574299.4861019 T s s 1 s 27.78443594294.2541020
T m m 1 c 416.6732928492.241516 T m m 1 s 412.5872938481.920516
T m m 2 c 410.2532978456.571518 T m m 2 s 405.9822988447.043518
T m m 3 c 416.7782928491.046516 T m m 3 s 411.9712948481.816516
T m m 4 c 403.8153028436.252519 T m m 4 s 398.1273048421.512520
T m m c 416.9932928815.222497 T m m s 413.0022938800.100498
T s s 2 c 27.83743828254.505531 T s s 2 s 27.62043858238.837531
T s s 3 c 27.34144618459.135518 T s s 3 s 27.76043628441.812519
T s k 1 c 83.812145516,419.040267 T s k 1 s 83.128145716,392.575267
T s k 2 c 120.263101416,980.127258 T s k 2 s 119.201101616,967.403258
T y i c , i = 1 , 3 , 4 , 6 25.09248613097.7771415 T y i s , i = 1 , 3 , 4 , 6 24.89848643094.3151416
T y i c , i = 2 , 5 23.85051142684.3621633 T y i s , i = 2 , 5 23.67251162681.0051634
Table 4. MSE and PRE of combined estimators utilizing hypothetically drawn Normal population.
Table 4. MSE and PRE of combined estimators utilizing hypothetically drawn Normal population.
ρ xy 0.60.70.80.9
EstimatorsMSEPREMSEPREMSEPREMSEPRE
X * N ( 3 , 4 )
Y * N ( 2 , 3 )
T m c 0.1231000.1231000.1331000.138100
T r c 0.29042.3730.29342.0050.30344.0970.29347.168
T β c / T u c 0.096128.0390.096128.3990.103128.8450.106130.174
T s g 1 c 0.094130.5870.094130.9000.101131.4970.103133.015
T s v 1 c 0.094130.4590.094130.6580.102131.1320.104132.477
T k k 1 c 0.22754.0590.23053.5980.23856.1170.23159.766
T k k 2 c 0.093131.0910.093131.4100.101132.0060.103133.531
T s g 2 c 0.14584.8490.14584.6640.15884.5980.16484.209
T s v 2 c 0.094129.5990.094129.9230.102130.4260.104131.792
T s s 1 c 0.093131.3610.093131.6820.101132.2580.103133.727
T m m 1 c 0.13392.1970.13491.9690.14194.7880.13999.172
T m m 2 c 0.14485.1810.14584.8920.15287.7780.14992.213
T m m 3 c 0.18964.8900.19164.5040.19967.2390.19371.345
T m m 4 c 0.21257.9870.21457.5920.22260.1780.21564.033
T m m c 0.28742.7930.29042.3980.30044.5560.28947.705
T s s 2 c 0.095129.5990.094129.9230.102130.4260.104131.792
T s s 3 c 0.095128.8180.095129.2400.103129.5910.105130.862
T s k 1 c 0.100122.5010.100122.7150.107124.1520.109126.759
T s k 2 c 0.096126.9610.096127.3200.105127.4140.107128.047
T y i c , i = 1 , 3 , 4 , 6 0.093131.0260.093131.3470.101131.9390.103133.460
T y i c , i = 2 , 5 0.092133.7180.091134.0490.099134.6910.101136.312
Table 5. MSE and PRE of combined estimators utilizing hypothetically drawn Weibull population.
Table 5. MSE and PRE of combined estimators utilizing hypothetically drawn Weibull population.
ρ xy 0.60.70.80.9
EstimatorsMSEPREMSEPREMSEPREMSEPRE
X * W e i b u l l ( 2 , 3 )
Y * W e i b u l l ( 2 , 5 )
T m c 0.0741000.0711000.0671000.067100
T r c 0.070105.9000.068104.2390.063105.7260.062106.929
T β c / T u c 0.059125.1060.056125.6070.052128.1280.052128.355
T s g 1 c 0.058125.7510.056126.1910.052128.6550.052128.842
T s v 1 c 0.058125.8090.056126.2620.052128.7460.052129.087
T k k 1 c 0.069107.3940.067105.6960.062107.1500.062109.339
T k k 2 c 0.058125.9460.056126.3950.052128.8810.052129.132
T s g 2 c 0.08884.1280.08583.8620.08182.7570.08183.312
T s v 2 c 0.058125.5770.056126.0430.052128.5170.052129.101
T s s 1 c 0.058126.0220.056126.4840.052128.9720.052129.333
T m m 1 c 0.064114.8090.062113.8050.057115.8710.057117.474
T m m 2 c 0.060122.3060.058122.1290.053124.6560.054125.508
T m m 3 c 0.066110.9540.065109.6350.060111.4470.059113.355
T m m 4 c 0.059124.1080.057124.2360.052126.8330.053127.392
T m m c 0.070105.9030.068104.2800.063105.7860.062107.949
T s s 2 c 0.059125.5770.056126.0430.052128.5170.052128.842
T s s 3 c 0.059125.2530.056125.7290.052128.2160.052128.355
T s k 1 c 0.061120.8400.058121.5750.054123.4040.055123.230
T s k 2 c 0.062118.3970.059119.0870.055120.6330.056120.603
T y i c , i = 1 , 3 , 4 , 6 0.058125.9440.056126.3940.052128.8790.052129.118
T y i c , i = 2 , 5 0.058126.1330.056126.5840.052129.0740.052129.870
Table 6. MSE and PRE of combined estimators utilizing hypothetically drawn Log-normal population.
Table 6. MSE and PRE of combined estimators utilizing hypothetically drawn Log-normal population.
ρ xy 0.60.70.80.9
EstimatorsMSEPREMSEPREMSEPREMSEPRE
X * L o g n o r m a l ( 0.2 , 1.5 )
Y * L o g n o r m a l ( 0.4 , 2.5 )
T m c 159.784100197.205100246.578100299.852100
T r c 224.33271278.20570347.85670424.95770
T β c / T u c 159.723100197.195100246.565100299.674100
T s g 1 c 113.604140139.291141171.861143206.584145
T s v 1 c 113.603140139.292141171.867143206.596145
T k k 1 c 111.622143136.703144167.930146201.401148
T k k 2 c 99.734160122.035161149.984164179.713166
T s g 2 c 113.653140139.290141171.868143206.754145
T s v 2 c 113.603140139.292141171.867143206.596145
T s s 1 c 113.597140139.216141171.709143206.371145
T m m 1 c 193.14782235.74083293.65583354.14284
T m m 2 c 188.90584232.48084289.16285348.09186
T m m 3 c 217.25373267.49773333.20074398.11675
T m m 4 c 213.81374263.26174328.01175394.08576
T m m c 223.92571274.94771341.63672408.10773
T s s 2 c 113.621140139.292141171.868143206.650145
T s s 3 c 120.366132147.403133181.597135218.016137
T s k 1 c 173.15392212.82292264.19193315.95794
T s k 2 c 170.58893209.58894259.15495314.16195
T y i c , i = 1 , 3 , 4 , 6 77.58720595.137207117.838209140.501213
T y i c , i = 2 , 5 71.16222486.985226108.010228128.979232
Table 7. MSE and PRE of separate estimators utilizing hypothetically drawn Normal population.
Table 7. MSE and PRE of separate estimators utilizing hypothetically drawn Normal population.
ρ xy 0.60.70.80.9
EstimatorsMSEPREMSEPREMSEPREMSEPRE
X * N ( 3 , 4 )
Y * N ( 2 , 3 )
T m s 0.1341000.1331000.1491000.154100
T r s 0.18572.7450.18571.8920.19676.2500.19180.579
T β s / T u s 0.105128.0390.104128.3990.116128.8450.118130.174
T s g 1 s 0.103130.3650.102130.6290.113131.3590.116132.895
T s v 1 s 0.102131.5010.101131.7930.112132.5100.115134.071
T k k 1 s 0.16382.3310.16481.3820.17386.1050.17090.728
T k k 2 s 0.102131.4790.101131.7610.112132.4800.115134.034
T s g 2 s 0.102131.7120.101132.0070.112132.7020.114134.245
T s v 2 s 0.103129.7470.102130.0510.114130.6110.116131.982
T s s 1 s 0.102131.0510.101131.3470.113131.9770.115133.423
T m m 1 s 0.15188.6510.15187.9110.16292.2200.15996.633
T m m 2 s 0.118113.3390.118113.0660.128116.1120.129119.590
T m m 3 s 0.16879.7060.16978.8870.17983.2830.17587.702
T m m 4 s 0.111120.5510.110120.5070.121122.7460.122125.549
T m m s 0.18174.0990.18273.1900.19277.7320.18782.204
T s s 2 s 0.123109.4120.122109.4310.136109.5410.140109.729
T s s 3 s 0.105128.0460.104128.4000.116128.8590.118130.193
T s k 1 s 0.106125.8880.105126.0710.117127.3790.119129.364
T s k 2 s 0.105128.0370.104128.3910.116128.8120.118129.953
T y i s , i = 1 , 3 , 4 , 6 0.102131.3070.101131.5920.113132.2980.115133.841
T y i s , i = 2 , 5 0.101132.9960.100133.2860.111134.0170.113135.599
Table 8. MSE and PRE of separate estimators utilizing hypothetically drawn Weibull population.
Table 8. MSE and PRE of separate estimators utilizing hypothetically drawn Weibull population.
ρ xy 0.60.70.80.9
EstimatorsMSEPREMSEPREMSEPREMSEPRE
X * W e i b u l l ( 2 , 3 )
Y * W e i b u l l ( 2 , 5 )
T m s 0.0751000.0721000.0681000.069100
T r s 0.067112.3880.065111.3450.060112.9960.060115.448
T β s / T u s 0.060125.1060.058125.6070.053128.1280.053128.942
T s g 1 s 0.060125.4370.057125.8650.053128.2850.053129.182
T s v 1 s 0.059126.0230.057126.4780.052128.9570.053129.906
T k k 1 s 0.066113.7280.064112.6510.059114.2640.059116.806
T k k 2 s 0.059125.9630.057126.4150.052128.8940.053129.664
T s g 2 s 0.059126.1890.057126.6540.052129.1580.053129.906
T s v 2 s 0.060125.5850.057126.0530.053128.5220.053129.422
T s s 1 s 0.059125.9880.057126.4520.052128.9320.053129.905
T m m 1 s 0.065114.8750.064114.0230.058115.8650.058118.197
T m m 2 s 0.060124.1370.058124.3140.053126.8480.054127.992
T m m 3 s 0.066113.7020.064112.7570.059114.5090.059116.806
T m m 4 s 0.062119.7480.060120.4300.055122.1880.056122.574
T m m s 0.066112.7070.065111.6610.060113.3060.060115.833
T s s 2 s 0.072104.4600.069104.5400.065104.7590.065105.623
T s s 3 s 0.060125.2940.058125.7690.053128.2500.053129.182
T s k 1 s 0.061123.3010.058123.9970.053126.2000.054126.824
T s k 2 s 0.061122.5170.059123.2230.054125.3200.055125.905
T y i s , i = 1 , 3 , 4 , 6 0.059125.9590.057126.4110.052128.8900.053129.785
T y i s , i = 2 , 5 0.059126.2980.057126.7820.052129.2220.053130.149
Table 9. MSE and PRE of separate estimators utilizing hypothetically drawn Log-normal population.
Table 9. MSE and PRE of separate estimators utilizing hypothetically drawn Log-normal population.
ρ xy 0.60.70.80.9
EstimatorsMSEPREMSEPREMSEPREMSEPRE
X * L o g n o r m a l ( 0.2 , 1.5 )
Y * L o g n o r m a l ( 0.4 , 2.5 )
T m s 159.785100197.206100246.579100299.853100
T r s 224.32271277.98070341.12872398.12875
T β s / T u s 159.051100197.195100246.565100299.674100
T s g 1 s 113.592140138.924141171.018144205.148146
T s v 1 s 113.591140138.998141170.985144205.051146
T k k 1 s 111.013143135.784145167.018147200.744149
T k k 2 s 98.998161121.089162149.001165178.673167
T s g 2 s 113.085141138.214142170.986144205.018146
T s v 2 s 113.053141138.114142170.889144205.324146
T s s 1 s 113.127141139.010141171.001144205.231146
T m m 1 s 193.00182235.74283293.10084352.05085
T m m 2 s 188.14284232.48184288.90385346.26786
T m m 3 s 217.00773267.49873332.00074394.51276
T m m 4 s 213.09074263.26274327.10075389.24877
T m m s 223.10271274.90171340.04872405.15474
T s s 2 s 113.053141138.154142170.768144205.115146
T s s 3 s 119.987133146.781134180.498136217.105138
T s k 1 s 173.88992212.81992264.18893314.42195
T s k 2 s 170.00093209.55894259.15195312.12196
T y i s , i = 1 , 3 , 4 , 6 77.41220694.589208117.014210139.652214
T y i s , i = 2 , 5 70.91222586.584227107.290229127.889234
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

MDPI and ACS Style

Bhushan, S.; Kumar, A.; Shahzad, U.; Al-Omari, A.I.; Almanjahie, I.M. On Some Improved Class of Estimators by Using Stratified Ranked Set Sampling. Mathematics 2022, 10, 3283. https://doi.org/10.3390/math10183283

AMA Style

Bhushan S, Kumar A, Shahzad U, Al-Omari AI, Almanjahie IM. On Some Improved Class of Estimators by Using Stratified Ranked Set Sampling. Mathematics. 2022; 10(18):3283. https://doi.org/10.3390/math10183283

Chicago/Turabian Style

Bhushan, Shashi, Anoop Kumar, Usman Shahzad, Amer Ibrahim Al-Omari, and Ibrahim Mufrah Almanjahie. 2022. "On Some Improved Class of Estimators by Using Stratified Ranked Set Sampling" Mathematics 10, no. 18: 3283. https://doi.org/10.3390/math10183283

APA Style

Bhushan, S., Kumar, A., Shahzad, U., Al-Omari, A. I., & Almanjahie, I. M. (2022). On Some Improved Class of Estimators by Using Stratified Ranked Set Sampling. Mathematics, 10(18), 3283. https://doi.org/10.3390/math10183283

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop