On Some Improved Class of Estimators by Using Stratified Ranked Set Sampling
Abstract
:1. Introduction
Methodology and Notations
2. Review of Existing Estimators
2.1. Combined Estimators
2.2. Separate Estimators
3. Proposed Estimators
3.1. Combined Estimators
3.2. Separate Estimators
4. Efficiency Comparison
4.1. Combined Estimators
4.2. Separate Estimators
4.3. Comparison of Proposed Combined and Separate Estimators
5. Empirical Study
5.1. Numerical Study
5.2. Simulation Study
6. Interpretation of Empirical Results
- (i).
- The results of the real populations displayed in Table 3 demonstrate the ascendancy of the proposed combined estimators over the reviewed combined estimators, namely, conventional mean estimator , classical ratio and regression estimators and , [31,35] type estimators and , [33,34] type estimators and , [32,36] type estimators and , [1] type estimator , [2,4] type estimators and , [3] type estimator , [9] estimators , [38] estimator , and [14] estimators .
- (ii).
- The results of normal population disclosed in Table 4 show the superiority of the proposed combined estimators over the existing combined estimators. Additionally, the proposed combined estimators are found to be fare efficient than most of the combined estimators existing till date but found to be less efficient than [34] type estimator and [1] type estimator . The similar interpretation can also be drawn from the results of Weibull population disclosed in Table 5.
- (iii).
- From the results of Log-normal population reported in Table 6, the ascendancy of the proposed combined estimators can be observed over the existing combined estimators.
- (iv).
- (v).
- (vi).
- (vii).
- (viii).
- (ix).
- The results of the numerical study using real populations, which are reported in Table 3 are also presented through the line diagrams given in Figure 1. The dominance of the proposed combined and separate estimators can easily be observed from Figure 1. As the PRE of the simulation results of Table 4, Table 5, Table 6, Table 7 and Table 8 also exhibit the same pattern and can be easily presented through line diagrams, if required.
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix B
Appendix C
Appendix D
References
- Singh, H.P.; Solanki, R.S. Efficient ratio and product estimators in stratified random sampling. Commun. Stat. Theory Methods 2013, 42, 1008–1023. [Google Scholar] [CrossRef]
- Solanki, R.S.; Singh, H.P. An efficient class of estimators for the population mean using auxiliary information in stratified random sampling. Commun. Stat. Theory Methods 2014, 43, 3380–3401. [Google Scholar] [CrossRef]
- Yadav, R.; Upadhyaya, L.N.; Singh, H.P.; Chatterjee, S. Improved ratio and product exponential type estimators for finite population mean in stratified random sampling. Commun. Stat. Theory Methods 2014, 43, 3269–3285. [Google Scholar] [CrossRef]
- Solanki, R.S.; Singh, H.P. An improved estimation in stratified random sampling. Commun. Stat. Theory Methods 2016, 45, 2056–2070. [Google Scholar] [CrossRef]
- Bhushan, S.; Kumar, A.; Singh, S. Some efficient classes of estimators under stratified sampling. Commun. Stat. Theory Methods 2021, 1–30. [Google Scholar] [CrossRef]
- McIntyre, G.A. A method of unbiased selective sampling using ranked set. Aust. J. Agric. Res. 1952, 3, 385–390. [Google Scholar] [CrossRef]
- Samawi, H.M. Stratified ranked set sampling. Pak. J. Stat. 1996, 12, 9–16. [Google Scholar]
- Samawi, H.M.; Siam, M.I. Ratio estimation using stratified ranked set sampling. Metron 2003, 61, 75–90. [Google Scholar]
- Mandowara, V.L.; Mehta, N. Modified ratio estimators using stratified ranked set sampling. Hacet. J. Math. Stat. 2014, 43, 461–471. [Google Scholar]
- Linder, D.F.; Samawi, H.; Yu, L.; Chatterjee, A.; Huang, Y.; Vogel, R. On stratified bivariate ranked set sampling for regression estimators. J. Appl. Stat. 2015, 42, 2571–2583. [Google Scholar] [CrossRef]
- Khan, L.; Shabbir, J. Hartley-Ross type unbiased estimators using ranked set sampling and stratified ranked set sampling. North Carol. J. Math. Stat. 2016, 2, 10–22. [Google Scholar]
- Yu, L.; Samawi, H.; Linder, D.; Chatterjee, A.; Huang, Y.; Vogel, R. On stratified bivariate ranked set sampling with optimal allocation for naïve and ratio estimators. J. Appl. Stat. 2017, 44, 457–473. [Google Scholar] [CrossRef]
- Chatterjee, A.; Samawi, H.; Yu, L.; Linder, D.; Cai, J.; Vogel, R. On regression estimators for different stratified sampling schemes. J. Stat. Manag. Syst. 2017, 20, 1147–1165. [Google Scholar] [CrossRef]
- Saini, M.; Kumar, A. Ratio estimators using stratified random sampling and stratified ranked set sampling. Life Cycle Relia. Safe. Eng. 2018, 84, 931–945. [Google Scholar] [CrossRef]
- Ibrahim, K.; Syam, M.; Al-Omari, A.I. Estimating the population mean using stratified median ranked set sampling. Appl. Math. Sci. 2010, 4, 2341–2354. [Google Scholar]
- Al-Omari, A.I.; Syam, M.; Ibrahim, K. Investigating the use of stratified percentile ranked set sampling method for estimating the population mean. Proyecciones J. Math. 2011, 30, 351–368. [Google Scholar] [CrossRef]
- Al-Omari, A.I. Ratio estimation of population mean using auxiliary information in simple random sampling and median ranked set sampling. Stat. Probab. Lett. 2012, 82, 1883–1990. [Google Scholar] [CrossRef]
- Bhushan, S.; Kumar, A. Novel log type class of estimators under ranked set sampling. Sankhya B 2022, 84, 421–447. [Google Scholar] [CrossRef]
- Cetin, A.E.; Koyuncu, N. Estimation of population mean under different stratified ranked set sampling designs with simulation study application to BMI data. Commun. Fac. Sci. 2020, 69, 560–575. [Google Scholar] [CrossRef]
- Samawai, H.M.; Saeid, L.J. Stratified extreme ranked set sample with application to ratio estimators. J. Mod. Appl. Stat. Methods 2004, 3, 117–133. [Google Scholar] [CrossRef]
- Khan, L.; Shabbir, J.; Gupta, S. Unbiased ratio estimators of the mean in stratified ranked set sampling. Hacet. J. Math. Stat. 2016, 46, 1151–1158. [Google Scholar] [CrossRef]
- Syam, M.; Ibrahim, K.; Al-Omari, A.I. Stratified double quartile ranked set samples. J. Math. Syst. Sci. 2013, 4, 49–55. [Google Scholar]
- Bhushan, S.; Kumar, A.; Lone, S.A. On some novel classes of estimators under ranked set sampling. AEJ-Alex. Eng. J. 2021, 61, 5465–5474. [Google Scholar] [CrossRef]
- Bhushan, S.; Kumar, A. Predictive estimation approach using difference and ratio type estimators in ranked set sampling. J. Compu. App. Math. 2022. [Google Scholar] [CrossRef]
- Bhushan, S.; Kumar, A. On optimal classes of estimators under ranked set sampling. Commun. Stat. Theory Methods 2022, 51, 2610–2639. [Google Scholar] [CrossRef]
- Maciak, M.; Pesta, M. and Pestova, M. Changepoint in dependent and non-stationary panels. Stat. Pap. 2020, 61, 1385–1407. [Google Scholar] [CrossRef]
- Arcos, A.; Cobo, B.; Rueda, M.M. Selection and estimation in ranked set sampling using R. In Ranked Set Sampling; Academic Press: Cambridge, MA, USA, 2019; pp. 269–279. [Google Scholar] [CrossRef]
- Bouza-Herrera, C.N. Stratified Ranked Set Sampling With Missing Observations for Estimating the Difference. In Ranked Set Sampling Models and Methods; IGI Global: Hershey, PA, USA, 2022; pp. 209–232. [Google Scholar]
- Arnold, B.C.; Balakrishnan, N.; Nagaraja, H.N. A First Course in Order Statistics; John Wiley: New York, NY, USA, 1993. [Google Scholar]
- Dell, T.R.; Clutter, J.L. Ranked set sampling theory with order statistics background. Biometrics 1972, 28, 545–555. [Google Scholar] [CrossRef]
- Shabbir, J.; Gupta, S. A new estimator of population mean in stratified sampling. Commun. Stat. Theory Methods 2006, 35, 1201–1209. [Google Scholar] [CrossRef]
- Singh, H.P.; Vishwakarma, G.K. A family of estimators of population mean using auxiliary information in stratified sampling. Commun. Stat. Theory Methods 2008, 37, 1038–1050. [Google Scholar] [CrossRef]
- Koyuncu, N.; Kadilar, C. Ratio and product estimators in stratified random sampling. J. Stat. Plan. Inference 2009, 139, 2552–2558. [Google Scholar] [CrossRef]
- Koyuncu, N.; Kadilar, C. On improvement in estimating population mean in stratified random sampling. J. Appl. Stat. 2010, 37, 999–1013. [Google Scholar] [CrossRef]
- Shabbir, J.; Gupta, S. On estimating finite population mean in simple and stratified random sampling. Commun. Stat. Theory Methods 2010, 40, 199–212. [Google Scholar] [CrossRef]
- Singh, H.P.; Vishwakarma, G.K. A general procedure for estimating the population mean in stratified sampling using auxiliary information. Metron 2010, 68, 47–65. [Google Scholar] [CrossRef]
- Kadilar, C.; Cingi, H. Ratio estimator in stratified sampling. Biom. J. 2003, 45, 218–225. [Google Scholar] [CrossRef]
- Mehta, N.; Mandowara, V.L. Advanced estimator in stratified ranked set sampling using auxiliary information. Int. J. Appl. Math. Stat. Scie 2016, 5, 37–46. [Google Scholar]
- Kadilar, C.; Cingi, H. A new ratio estimator in stratified random sampling. Commun. Stat. Theory Methods 2005, 34, 597–602. [Google Scholar] [CrossRef]
- Cochran, W.G. Sampling Techniques; John Wiley and Sons: New York, NY, USA, 1977. [Google Scholar]
- Singh, R.; Mangat, N.S. Elements of Survey Sampling; Kluwer Academic: Boston, MA, USA, 1996. [Google Scholar]
- Singh, H.P.; Horn, S. An alternative estimator for multi-character surveys. Metrika 1998, 48, 99–107. [Google Scholar]
Total | Stratum h | 1 | 2 | 3 | 4 | |
---|---|---|---|---|---|---|
Population mean | = 85,838 | 72.08 | 55.8 | 73.0 | 66.1 | |
Population mean | = 70.02 | 79.4 | 59.4 | 76.7 | 64.6 | |
Kurtosis coefficient | = 0.8678 | 0.6940 | 0.8361 | 0.9756 | 0.9655 | |
Correlation coefficient | = 0.8673 | 0.7810 | 0.8891 | 0.9004 | 0.8990 | |
Variation coefficient | = 0.206 | 0.1906 | 0.2416 | 0.201 | 0.1908 | |
Standard deviation | = 13.684 | 14.529 | 9.853 | 13.892 | 12.161 | |
Standard deviation | = 13.584 | 12.911 | 13.202 | 15.053 | 13.061 | |
Population size | N = 1254 | 400 | 216 | 364 | 274 |
Total | Stratum h | 1 | 2 | 3 | 4 | 5 | 6 | |
---|---|---|---|---|---|---|---|---|
Population mean | = 37,600 | 24,375 | 27,421 | 72,409 | 74,365 | 26,441 | 9844 | |
Population mean | = 2930 | 1536 | 2212 | 9384 | 5588 | 967 | 404 | |
Kurtosis coefficient | = 312.07 | 25.71 | 34.57 | 26.14 | 97.60 | 27.47 | 28.10 | |
Correlation coefficient | = 0.92 | 0.82 | 0.86 | 0.9 | 0.99 | 0.71 | 0.89 | |
Variation coefficient | 2.0180 | 2.0955 | 2.2201 | 3.8404 | 1.7171 | 1.9091 | ||
Standard deviation | = 144,794 | 49,189 | 57,461 | 160,757 | 285,603 | 45,403 | 18,794 | |
Standard deviation | = 17,106 | 6425 | 11,552 | 29,907 | 28,643 | 2390 | 946 | |
Population size | N = 854 | 106 | 106 | 94 | 171 | 204 | 173 |
Combined | Population 1 | Population 2 | Separate | Population 1 | Population 2 | ||||
---|---|---|---|---|---|---|---|---|---|
Estimators | MSE | PRE | MSE | PRE | Estimators | MSE | PRE | MSE | PRE |
1219.903 | 100 | 43,839.760 | 100 | 1211.201 | 100 | 43.829.561 | 100 | ||
416.781 | 292 | 8491.407 | 516 | 411.618 | 294 | 8476.984 | 517 | ||
/ | 27.995 | 4357 | 8410.157 | 521 | / | 27.781 | 4359 | 8396.054 | 522 |
36.760 | 3318 | 3110.717 | 1409 | 36.480 | 3320 | 3106.152 | 1411 | ||
27.846 | 4380 | 3187.773 | 1375 | 27.636 | 4382 | 3181.980 | 1377 | ||
416.524 | 292 | 4901.103 | 894 | 414.648 | 292 | 4891.648 | 896 | ||
27.995 | 4357 | 8414.176 | 521 | 27.789 | 4358 | 8401.425 | 521 | ||
27.896 | 4372 | 3543.575 | 1237 | 27.690 | 4374 | 3536.586 | 1239 | ||
27.846 | 4382 | 3187.773 | 1375 | 27.621 | 4385 | 3183.124 | 1376 | ||
27.995 | 4357 | 4299.486 | 1019 | 27.784 | 4359 | 4294.254 | 1020 | ||
416.673 | 292 | 8492.241 | 516 | 412.587 | 293 | 8481.920 | 516 | ||
410.253 | 297 | 8456.571 | 518 | 405.982 | 298 | 8447.043 | 518 | ||
416.778 | 292 | 8491.046 | 516 | 411.971 | 294 | 8481.816 | 516 | ||
403.815 | 302 | 8436.252 | 519 | 398.127 | 304 | 8421.512 | 520 | ||
416.993 | 292 | 8815.222 | 497 | 413.002 | 293 | 8800.100 | 498 | ||
27.837 | 4382 | 8254.505 | 531 | 27.620 | 4385 | 8238.837 | 531 | ||
27.341 | 4461 | 8459.135 | 518 | 27.760 | 4362 | 8441.812 | 519 | ||
83.812 | 1455 | 16,419.040 | 267 | 83.128 | 1457 | 16,392.575 | 267 | ||
120.263 | 1014 | 16,980.127 | 258 | 119.201 | 1016 | 16,967.403 | 258 | ||
25.092 | 4861 | 3097.777 | 1415 | 24.898 | 4864 | 3094.315 | 1416 | ||
23.850 | 5114 | 2684.362 | 1633 | 23.672 | 5116 | 2681.005 | 1634 |
0.6 | 0.7 | 0.8 | 0.9 | |||||
---|---|---|---|---|---|---|---|---|
Estimators | MSE | PRE | MSE | PRE | MSE | PRE | MSE | PRE |
0.123 | 100 | 0.123 | 100 | 0.133 | 100 | 0.138 | 100 | |
0.290 | 42.373 | 0.293 | 42.005 | 0.303 | 44.097 | 0.293 | 47.168 | |
/ | 0.096 | 128.039 | 0.096 | 128.399 | 0.103 | 128.845 | 0.106 | 130.174 |
0.094 | 130.587 | 0.094 | 130.900 | 0.101 | 131.497 | 0.103 | 133.015 | |
0.094 | 130.459 | 0.094 | 130.658 | 0.102 | 131.132 | 0.104 | 132.477 | |
0.227 | 54.059 | 0.230 | 53.598 | 0.238 | 56.117 | 0.231 | 59.766 | |
0.093 | 131.091 | 0.093 | 131.410 | 0.101 | 132.006 | 0.103 | 133.531 | |
0.145 | 84.849 | 0.145 | 84.664 | 0.158 | 84.598 | 0.164 | 84.209 | |
0.094 | 129.599 | 0.094 | 129.923 | 0.102 | 130.426 | 0.104 | 131.792 | |
0.093 | 131.361 | 0.093 | 131.682 | 0.101 | 132.258 | 0.103 | 133.727 | |
0.133 | 92.197 | 0.134 | 91.969 | 0.141 | 94.788 | 0.139 | 99.172 | |
0.144 | 85.181 | 0.145 | 84.892 | 0.152 | 87.778 | 0.149 | 92.213 | |
0.189 | 64.890 | 0.191 | 64.504 | 0.199 | 67.239 | 0.193 | 71.345 | |
0.212 | 57.987 | 0.214 | 57.592 | 0.222 | 60.178 | 0.215 | 64.033 | |
0.287 | 42.793 | 0.290 | 42.398 | 0.300 | 44.556 | 0.289 | 47.705 | |
0.095 | 129.599 | 0.094 | 129.923 | 0.102 | 130.426 | 0.104 | 131.792 | |
0.095 | 128.818 | 0.095 | 129.240 | 0.103 | 129.591 | 0.105 | 130.862 | |
0.100 | 122.501 | 0.100 | 122.715 | 0.107 | 124.152 | 0.109 | 126.759 | |
0.096 | 126.961 | 0.096 | 127.320 | 0.105 | 127.414 | 0.107 | 128.047 | |
0.093 | 131.026 | 0.093 | 131.347 | 0.101 | 131.939 | 0.103 | 133.460 | |
0.092 | 133.718 | 0.091 | 134.049 | 0.099 | 134.691 | 0.101 | 136.312 |
0.6 | 0.7 | 0.8 | 0.9 | |||||
---|---|---|---|---|---|---|---|---|
Estimators | MSE | PRE | MSE | PRE | MSE | PRE | MSE | PRE |
0.074 | 100 | 0.071 | 100 | 0.067 | 100 | 0.067 | 100 | |
0.070 | 105.900 | 0.068 | 104.239 | 0.063 | 105.726 | 0.062 | 106.929 | |
/ | 0.059 | 125.106 | 0.056 | 125.607 | 0.052 | 128.128 | 0.052 | 128.355 |
0.058 | 125.751 | 0.056 | 126.191 | 0.052 | 128.655 | 0.052 | 128.842 | |
0.058 | 125.809 | 0.056 | 126.262 | 0.052 | 128.746 | 0.052 | 129.087 | |
0.069 | 107.394 | 0.067 | 105.696 | 0.062 | 107.150 | 0.062 | 109.339 | |
0.058 | 125.946 | 0.056 | 126.395 | 0.052 | 128.881 | 0.052 | 129.132 | |
0.088 | 84.128 | 0.085 | 83.862 | 0.081 | 82.757 | 0.081 | 83.312 | |
0.058 | 125.577 | 0.056 | 126.043 | 0.052 | 128.517 | 0.052 | 129.101 | |
0.058 | 126.022 | 0.056 | 126.484 | 0.052 | 128.972 | 0.052 | 129.333 | |
0.064 | 114.809 | 0.062 | 113.805 | 0.057 | 115.871 | 0.057 | 117.474 | |
0.060 | 122.306 | 0.058 | 122.129 | 0.053 | 124.656 | 0.054 | 125.508 | |
0.066 | 110.954 | 0.065 | 109.635 | 0.060 | 111.447 | 0.059 | 113.355 | |
0.059 | 124.108 | 0.057 | 124.236 | 0.052 | 126.833 | 0.053 | 127.392 | |
0.070 | 105.903 | 0.068 | 104.280 | 0.063 | 105.786 | 0.062 | 107.949 | |
0.059 | 125.577 | 0.056 | 126.043 | 0.052 | 128.517 | 0.052 | 128.842 | |
0.059 | 125.253 | 0.056 | 125.729 | 0.052 | 128.216 | 0.052 | 128.355 | |
0.061 | 120.840 | 0.058 | 121.575 | 0.054 | 123.404 | 0.055 | 123.230 | |
0.062 | 118.397 | 0.059 | 119.087 | 0.055 | 120.633 | 0.056 | 120.603 | |
0.058 | 125.944 | 0.056 | 126.394 | 0.052 | 128.879 | 0.052 | 129.118 | |
0.058 | 126.133 | 0.056 | 126.584 | 0.052 | 129.074 | 0.052 | 129.870 |
0.6 | 0.7 | 0.8 | 0.9 | |||||
---|---|---|---|---|---|---|---|---|
Estimators | MSE | PRE | MSE | PRE | MSE | PRE | MSE | PRE |
159.784 | 100 | 197.205 | 100 | 246.578 | 100 | 299.852 | 100 | |
224.332 | 71 | 278.205 | 70 | 347.856 | 70 | 424.957 | 70 | |
/ | 159.723 | 100 | 197.195 | 100 | 246.565 | 100 | 299.674 | 100 |
113.604 | 140 | 139.291 | 141 | 171.861 | 143 | 206.584 | 145 | |
113.603 | 140 | 139.292 | 141 | 171.867 | 143 | 206.596 | 145 | |
111.622 | 143 | 136.703 | 144 | 167.930 | 146 | 201.401 | 148 | |
99.734 | 160 | 122.035 | 161 | 149.984 | 164 | 179.713 | 166 | |
113.653 | 140 | 139.290 | 141 | 171.868 | 143 | 206.754 | 145 | |
113.603 | 140 | 139.292 | 141 | 171.867 | 143 | 206.596 | 145 | |
113.597 | 140 | 139.216 | 141 | 171.709 | 143 | 206.371 | 145 | |
193.147 | 82 | 235.740 | 83 | 293.655 | 83 | 354.142 | 84 | |
188.905 | 84 | 232.480 | 84 | 289.162 | 85 | 348.091 | 86 | |
217.253 | 73 | 267.497 | 73 | 333.200 | 74 | 398.116 | 75 | |
213.813 | 74 | 263.261 | 74 | 328.011 | 75 | 394.085 | 76 | |
223.925 | 71 | 274.947 | 71 | 341.636 | 72 | 408.107 | 73 | |
113.621 | 140 | 139.292 | 141 | 171.868 | 143 | 206.650 | 145 | |
120.366 | 132 | 147.403 | 133 | 181.597 | 135 | 218.016 | 137 | |
173.153 | 92 | 212.822 | 92 | 264.191 | 93 | 315.957 | 94 | |
170.588 | 93 | 209.588 | 94 | 259.154 | 95 | 314.161 | 95 | |
77.587 | 205 | 95.137 | 207 | 117.838 | 209 | 140.501 | 213 | |
71.162 | 224 | 86.985 | 226 | 108.010 | 228 | 128.979 | 232 |
0.6 | 0.7 | 0.8 | 0.9 | |||||
---|---|---|---|---|---|---|---|---|
Estimators | MSE | PRE | MSE | PRE | MSE | PRE | MSE | PRE |
0.134 | 100 | 0.133 | 100 | 0.149 | 100 | 0.154 | 100 | |
0.185 | 72.745 | 0.185 | 71.892 | 0.196 | 76.250 | 0.191 | 80.579 | |
/ | 0.105 | 128.039 | 0.104 | 128.399 | 0.116 | 128.845 | 0.118 | 130.174 |
0.103 | 130.365 | 0.102 | 130.629 | 0.113 | 131.359 | 0.116 | 132.895 | |
0.102 | 131.501 | 0.101 | 131.793 | 0.112 | 132.510 | 0.115 | 134.071 | |
0.163 | 82.331 | 0.164 | 81.382 | 0.173 | 86.105 | 0.170 | 90.728 | |
0.102 | 131.479 | 0.101 | 131.761 | 0.112 | 132.480 | 0.115 | 134.034 | |
0.102 | 131.712 | 0.101 | 132.007 | 0.112 | 132.702 | 0.114 | 134.245 | |
0.103 | 129.747 | 0.102 | 130.051 | 0.114 | 130.611 | 0.116 | 131.982 | |
0.102 | 131.051 | 0.101 | 131.347 | 0.113 | 131.977 | 0.115 | 133.423 | |
0.151 | 88.651 | 0.151 | 87.911 | 0.162 | 92.220 | 0.159 | 96.633 | |
0.118 | 113.339 | 0.118 | 113.066 | 0.128 | 116.112 | 0.129 | 119.590 | |
0.168 | 79.706 | 0.169 | 78.887 | 0.179 | 83.283 | 0.175 | 87.702 | |
0.111 | 120.551 | 0.110 | 120.507 | 0.121 | 122.746 | 0.122 | 125.549 | |
0.181 | 74.099 | 0.182 | 73.190 | 0.192 | 77.732 | 0.187 | 82.204 | |
0.123 | 109.412 | 0.122 | 109.431 | 0.136 | 109.541 | 0.140 | 109.729 | |
0.105 | 128.046 | 0.104 | 128.400 | 0.116 | 128.859 | 0.118 | 130.193 | |
0.106 | 125.888 | 0.105 | 126.071 | 0.117 | 127.379 | 0.119 | 129.364 | |
0.105 | 128.037 | 0.104 | 128.391 | 0.116 | 128.812 | 0.118 | 129.953 | |
0.102 | 131.307 | 0.101 | 131.592 | 0.113 | 132.298 | 0.115 | 133.841 | |
0.101 | 132.996 | 0.100 | 133.286 | 0.111 | 134.017 | 0.113 | 135.599 |
0.6 | 0.7 | 0.8 | 0.9 | |||||
---|---|---|---|---|---|---|---|---|
Estimators | MSE | PRE | MSE | PRE | MSE | PRE | MSE | PRE |
0.075 | 100 | 0.072 | 100 | 0.068 | 100 | 0.069 | 100 | |
0.067 | 112.388 | 0.065 | 111.345 | 0.060 | 112.996 | 0.060 | 115.448 | |
/ | 0.060 | 125.106 | 0.058 | 125.607 | 0.053 | 128.128 | 0.053 | 128.942 |
0.060 | 125.437 | 0.057 | 125.865 | 0.053 | 128.285 | 0.053 | 129.182 | |
0.059 | 126.023 | 0.057 | 126.478 | 0.052 | 128.957 | 0.053 | 129.906 | |
0.066 | 113.728 | 0.064 | 112.651 | 0.059 | 114.264 | 0.059 | 116.806 | |
0.059 | 125.963 | 0.057 | 126.415 | 0.052 | 128.894 | 0.053 | 129.664 | |
0.059 | 126.189 | 0.057 | 126.654 | 0.052 | 129.158 | 0.053 | 129.906 | |
0.060 | 125.585 | 0.057 | 126.053 | 0.053 | 128.522 | 0.053 | 129.422 | |
0.059 | 125.988 | 0.057 | 126.452 | 0.052 | 128.932 | 0.053 | 129.905 | |
0.065 | 114.875 | 0.064 | 114.023 | 0.058 | 115.865 | 0.058 | 118.197 | |
0.060 | 124.137 | 0.058 | 124.314 | 0.053 | 126.848 | 0.054 | 127.992 | |
0.066 | 113.702 | 0.064 | 112.757 | 0.059 | 114.509 | 0.059 | 116.806 | |
0.062 | 119.748 | 0.060 | 120.430 | 0.055 | 122.188 | 0.056 | 122.574 | |
0.066 | 112.707 | 0.065 | 111.661 | 0.060 | 113.306 | 0.060 | 115.833 | |
0.072 | 104.460 | 0.069 | 104.540 | 0.065 | 104.759 | 0.065 | 105.623 | |
0.060 | 125.294 | 0.058 | 125.769 | 0.053 | 128.250 | 0.053 | 129.182 | |
0.061 | 123.301 | 0.058 | 123.997 | 0.053 | 126.200 | 0.054 | 126.824 | |
0.061 | 122.517 | 0.059 | 123.223 | 0.054 | 125.320 | 0.055 | 125.905 | |
0.059 | 125.959 | 0.057 | 126.411 | 0.052 | 128.890 | 0.053 | 129.785 | |
0.059 | 126.298 | 0.057 | 126.782 | 0.052 | 129.222 | 0.053 | 130.149 |
0.6 | 0.7 | 0.8 | 0.9 | |||||
---|---|---|---|---|---|---|---|---|
Estimators | MSE | PRE | MSE | PRE | MSE | PRE | MSE | PRE |
159.785 | 100 | 197.206 | 100 | 246.579 | 100 | 299.853 | 100 | |
224.322 | 71 | 277.980 | 70 | 341.128 | 72 | 398.128 | 75 | |
/ | 159.051 | 100 | 197.195 | 100 | 246.565 | 100 | 299.674 | 100 |
113.592 | 140 | 138.924 | 141 | 171.018 | 144 | 205.148 | 146 | |
113.591 | 140 | 138.998 | 141 | 170.985 | 144 | 205.051 | 146 | |
111.013 | 143 | 135.784 | 145 | 167.018 | 147 | 200.744 | 149 | |
98.998 | 161 | 121.089 | 162 | 149.001 | 165 | 178.673 | 167 | |
113.085 | 141 | 138.214 | 142 | 170.986 | 144 | 205.018 | 146 | |
113.053 | 141 | 138.114 | 142 | 170.889 | 144 | 205.324 | 146 | |
113.127 | 141 | 139.010 | 141 | 171.001 | 144 | 205.231 | 146 | |
193.001 | 82 | 235.742 | 83 | 293.100 | 84 | 352.050 | 85 | |
188.142 | 84 | 232.481 | 84 | 288.903 | 85 | 346.267 | 86 | |
217.007 | 73 | 267.498 | 73 | 332.000 | 74 | 394.512 | 76 | |
213.090 | 74 | 263.262 | 74 | 327.100 | 75 | 389.248 | 77 | |
223.102 | 71 | 274.901 | 71 | 340.048 | 72 | 405.154 | 74 | |
113.053 | 141 | 138.154 | 142 | 170.768 | 144 | 205.115 | 146 | |
119.987 | 133 | 146.781 | 134 | 180.498 | 136 | 217.105 | 138 | |
173.889 | 92 | 212.819 | 92 | 264.188 | 93 | 314.421 | 95 | |
170.000 | 93 | 209.558 | 94 | 259.151 | 95 | 312.121 | 96 | |
77.412 | 206 | 94.589 | 208 | 117.014 | 210 | 139.652 | 214 | |
70.912 | 225 | 86.584 | 227 | 107.290 | 229 | 127.889 | 234 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bhushan, S.; Kumar, A.; Shahzad, U.; Al-Omari, A.I.; Almanjahie, I.M. On Some Improved Class of Estimators by Using Stratified Ranked Set Sampling. Mathematics 2022, 10, 3283. https://doi.org/10.3390/math10183283
Bhushan S, Kumar A, Shahzad U, Al-Omari AI, Almanjahie IM. On Some Improved Class of Estimators by Using Stratified Ranked Set Sampling. Mathematics. 2022; 10(18):3283. https://doi.org/10.3390/math10183283
Chicago/Turabian StyleBhushan, Shashi, Anoop Kumar, Usman Shahzad, Amer Ibrahim Al-Omari, and Ibrahim Mufrah Almanjahie. 2022. "On Some Improved Class of Estimators by Using Stratified Ranked Set Sampling" Mathematics 10, no. 18: 3283. https://doi.org/10.3390/math10183283
APA StyleBhushan, S., Kumar, A., Shahzad, U., Al-Omari, A. I., & Almanjahie, I. M. (2022). On Some Improved Class of Estimators by Using Stratified Ranked Set Sampling. Mathematics, 10(18), 3283. https://doi.org/10.3390/math10183283