Wavelet Density and Regression Estimators for Functional Stationary and Ergodic Data: Discrete Time
Abstract
:1. Introduction
2. Multiresolution Analysis
- (A.1)
- and where and for and are positive constants.
- (A.2)
- and where and for and are positive constants.
- (E.1)
- There exists a constant such that, for any integer , one has
- (i)
- (ii)
- (E.2)
- There exists a constant such that, for any integer , one has
Besov Space
3. Problem Definition of the Density Estimation
- (F.1)
- a known constant such that
3.1. Density Function Estimator
3.2. Estimation Procedure Steps
- 1.
- 2.
- Applying the hard thresholding to select the greatest ;
- 3.
- Reconstructing the selected elements of the initial wavelet basis.
- (C.0)
- There is a non-negative measurable function such that
- (C.1)
- For anyAt this point, we may refer to [56] for further details.
4. Problem Definition of the Regression Estimation
- (M.1)
- We shall suppose that there exist two known constant such that
- (M.2)
- We shall suppose that there exist two known constant such that
Regression Function Estimator
5. Applications
5.1. The Conditional Distribution
5.2. The Curve Discrimination
5.3. Time Series Prediction from Continuous Set of Past Values
6. Concluding Remarks
7. Proofs
7.1. Proof of Theorem 1
7.1.1. Proof of Theorem 1
7.1.2. Proof of Lemmas
Proof of Lemma 3
Proof of Lemma 4
Proof of Lemma 5
7.1.3. Proof of Theorem 2
7.1.4. Proof of Theorem 2
7.1.5. Proof of Lemmas
Proof of Lemma 6
Proof of Lemma 7
Proof of Lemma 8
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bosq, D. Linear Processes in Function Spaces; Volume 149 of Lecture Notes in Statistics; Theory and applications; Springer: New York, NY, USA, 2000. [Google Scholar]
- Ramsay, J.; Silverman, B. Functional Data Analysis, 2nd ed.; Springer Series in Statistics; Springer: New York, NY, USA, 2005. [Google Scholar]
- Ferraty, F.; Vieu, P. Nonparametric Functional Data Analysis; Springer Series in Statistics; Springer: New York, NY, USA, 2006. [Google Scholar]
- Horváth, L.; Kokoszka, P. Inference for Functional Data with Applications; Springer Series in Statistics; Springer: New York, NY, USA, 2012. [Google Scholar]
- Zhang, J. Analysis of Variance for Functional Data; Volume 127 of Monographs on Statistics and Applied Probability; CRC Press: Boca Raton, FL, USA, 2014. [Google Scholar]
- Qing, S.; Choi, T. Gaussian Process Regression Analysis for Functional Data; CRC Press: Boca Raton, FL, USA, 2011. [Google Scholar]
- Geenens, G. Curse of dimensionality and related issues in nonparametric functional regression. Stat. Surv. 2011, 5, 30–43. [Google Scholar] [CrossRef]
- Cuevas, A. A partial overview of the theory of statistics with functional data. J. Statist. Plann. Inference 2014, 147, 1–23. [Google Scholar] [CrossRef]
- Shang, H. A survey of functional principal component analysis. AStA Adv. Stat. Anal. 2014, 98, 121–142. [Google Scholar] [CrossRef]
- Horváth, L.; Rice, G. An introduction to functional data analysis and a principal component approach for testing the equality of mean curves. Rev. Mat. Complut. 2015, 28, 505–548. [Google Scholar] [CrossRef]
- Müller, H. Peter hall, functional data analysis and random objects. Ann. Statist. 2016, 44, 1867–1887. [Google Scholar] [CrossRef]
- Nagy, S. An overview of consistency results for depth functionals. In Functional Statistics and Related Fields; Contrib. Stat.; Springer: Cham, Switzerland, 2017; pp. 189–196. [Google Scholar]
- Vieu, P. On dimension reduction models for functional data. Statist. Probab. Lett. 2018, 136, 134–138. [Google Scholar] [CrossRef]
- Aneiros-Pérez, G.; Cao, R.; Fraiman, R.; Genest, C.; Vieu, P. Recent advances in functional data analysis and high-dimensional statistics. J. Multivar. Anal. 2018, 170, 3–9. [Google Scholar] [CrossRef]
- Ling, N.; Vieu, P. Nonparametric modelling for functional data: Selected survey and tracks for future. Statistics 2018, 52, 934–949. [Google Scholar] [CrossRef]
- Goia, A.; Vieu, P. An introduction to recent advances in high/infinite dimensional statistics. J. Multivar. Anal. 2016, 146, 1–6. [Google Scholar] [CrossRef]
- Almanjahie, I.M.; Bouzebda, S.; ChikrElmezouar, Z.; Laksaci, A. The functional kNN estimator of the conditional expectile: Uniform consistency in number of neighbors. Stat. Risk Model. 2022, 38, 47–63. [Google Scholar] [CrossRef]
- Almanjahie, I.M.; Bouzebda, S.; Kaid, Z.; Laksaci, A. Nonparametric estimation of expectile regression in functional dependent data. J. Nonparametr. Stat. 2022, 34, 250–281. [Google Scholar] [CrossRef]
- Bouzebda, S.; Nezzal, A. Uniform consistency and uniform in number of neighbors consistency for nonparametric regression estimates and conditional U-statistics involving functional data. Jpn. J. Stat. Data Sci. 2022, 1–103. [Google Scholar] [CrossRef]
- Bouzebda, S.; Nemouchi, B. Weak-convergence of empirical conditional processes and conditional U-processes involving functional mixing data. Stat. Inference Stoch. Process. 2022, 1–56. [Google Scholar] [CrossRef]
- Bouzebda, S.; Nemouchi, B. Uniform consistency and uniform in bandwidth consistency for nonparametric regression estimates and conditional U-statistics involving functional data. J. Nonparametr. Stat. 2020, 32, 452–509. [Google Scholar] [CrossRef]
- Almanjahie, I.M.; Kaid, Z.; Laksaci, A.; Rachdi, M. Estimating the conditional density in scalar-on-function regression structure: k-NN local linear approach. Mathematics 2022, 10, 902. [Google Scholar] [CrossRef]
- Meyer, Y. Wavelets and operators. In Different Perspectives on Wavelets (San Antonio, TX, 1993); Volume 47 of Proc. Sympos. Appl. Math.; Amer. Math. Soc.: Providence, RI, USA, 1993; pp. 35–58. [Google Scholar]
- Daubechies, I. Ten Lectures on Wavelets; Volume 61 of CBMS-NSF Regional Conference Series in Applied Mathematics; Society for Industrial and Applied Mathematics (SIAM): Philadelphia, PA, USA, 1992. [Google Scholar]
- Mallat, S. A Wavelet Tour of Signal Processing, 3rd ed.; Elsevier/Academic Press: Amsterdam, The Netherlands, 2009. [Google Scholar]
- Vidakovic, B. Statistical Modeling by Wavelets; Wiley Series in Probability and Statistics: Applied Probability and Statistics; John Wiley & Sons Inc.: New York, NY, USA, 1999. [Google Scholar]
- Härdle, W.; Kerkyacharian, G.; Picard, D.; Tsybakov, A. Wavelets, Approximation, and Statistical Applications; Volume 129 of Lecture Notes in Statistics; Springer: New York, NY, USA, 1998. [Google Scholar]
- Rao, B.L.S.P. Nonparametric estimation of the derivatives of a density by the method of wavelets. Bull. Inform. Cybernet. 1996, 28, 91–100. [Google Scholar] [CrossRef]
- Chaubey, Y.P.; Doosti, H.; Rao, B.P. Wavelet based estimation of the derivatives of a density for a negatively associated process. J. Stat. Theory Pract. 2008, 2, 453–463. [Google Scholar] [CrossRef]
- Rao, B.L.S.P. Nonparametric Estimation of Partial Derivatives of a Multivariate Probability Density by the Method of Wavelets; De Gruyter: Berlin, Germany, 2018; pp. 321–330. [Google Scholar]
- Prakasa Rao, B.L.S. Wavelet estimation for derivative of a density in the presence of additive noise. Braz. J. Probab. Stat. 2018, 32, 834–850. [Google Scholar] [CrossRef]
- Allaoui, S.; Bouzebda, S.; Chesneau, C.; Liu, J. Uniform almost sure convergence and asymptotic distribution of the wavelet-based estimators of partial derivatives of multivariate density function under weak dependence. J. Nonparametr. Stat. 2021, 33, 170–196. [Google Scholar] [CrossRef]
- Chesneau, C.; Kachour, M.; Maillot, B. Nonparametric estimation for functional data by wavelet thresholding. REVSTAT 2013, 11, 211–230. [Google Scholar]
- Rosenblatt, M. Uniform ergodicity and strong mixing. Z. Wahrscheinlichkeitstheorie Verw. Gebiete 1972, 24, 79–84. [Google Scholar] [CrossRef]
- Bradley, R. Introduction to Strong Mixing Conditions; Kendrick Press: Heber City, UT, USA, 2007; Volume 1. [Google Scholar]
- Laïb, N.; Louani, D. Nonparametric kernel regression estimation for functional stationary ergodic data: Asymptotic properties. J. Multivariate Anal. 2010, 101, 2266–2281. [Google Scholar] [CrossRef]
- Bouzebda, S.; Didi, S.; ElHajj, L. Multivariate wavelet density and regression estimators for stationary and ergodic continuous time processes: Asymptotic results. Math. Methods Statist. 2015, 24, 163–199. [Google Scholar] [CrossRef]
- Delecroix, M.; Rosa, A.C. Nonparametric estimation of a regression function and its derivatives under an ergodic hypothesis. J. Nonparametr. Statist. 1996, 6, 367–382. [Google Scholar] [CrossRef]
- Bouzebda, S.; Didi, S. Additive regression model for stationary and ergodic continuous time processes. Comm. Statist. Theory Methods 2017, 46, 2454–2493. [Google Scholar] [CrossRef]
- Bouzebda, S.; Didi, S. Multivariate wavelet density and regression estimators for stationary and ergodic discrete time processes: Asymptotic results. Comm. Statist. Theory Methods 2017, 46, 1367–1406. [Google Scholar] [CrossRef]
- Bouzebda, S.; Didi, S. Some asymptotic properties of kernel regression estimators of the mode for stationary and ergodic continuous time processes. Rev. Mat. Complut. 2021, 34, 811–852. [Google Scholar] [CrossRef]
- Bouzebda, S.; Didi, S. Some results about kernel estimators for function derivatives based on stationary and ergodic continuous time processes with applications. Comm. Statist. Theory Methods 2022, 51, 3886–3933. [Google Scholar] [CrossRef]
- Bouzebda, S.; Chaouch, M. Uniform limit theorems for a class of conditional z-estimators when covariates are functions. J. Multivar. Anal. 2022, 189, 104872. [Google Scholar] [CrossRef]
- Bouzebda, S.; Chaouch, M.; Didi, S. Asymptotics for function derivatives estimators based on stationary and ergodic discrete time processes. Ann. Inst. Statist. Math. 2022, 74, 1–35. [Google Scholar] [CrossRef]
- Leucht, A.; Neumann, M. Degenerate U- and V-statistics under ergodicity: Asymptotics, bootstrap and applications in statistics. Ann. Inst. Statist. Math. 2013, 65, 349–386. [Google Scholar] [CrossRef] [Green Version]
- Neumann, M.H. Absolute regularity and ergodicity of Poisson count processes. Bernoulli 2011, 17, 1268–1284. [Google Scholar] [CrossRef]
- Goh, S.S. Wavelet bases for Hilbert spaces of functions. Complex Var. Elliptic Equ. 2007, 52, 245–260. [Google Scholar] [CrossRef]
- Kerkyacharian, G.; Picard, D. Density estimation in Besov spaces. Statist. Probab. Lett. 1992, 13, 15–24. [Google Scholar] [CrossRef]
- Kerkyacharian, G.; Picard, D. Thresholding algorithms, maxisets and well-concentrated bases. Test 2000, 9, 283–344. [Google Scholar] [CrossRef]
- Prakasa, Rao, B. L.S. Nonparametric density estimation for functional data via wavelets. Commun. Stat. Theory Methods 2010, 39, 1608–1618. [Google Scholar] [CrossRef]
- Cohen, A.; DeVore, R.; Kerkyacharian, G.; Picard, D. Maximal spaces with given rate of convergence for thresholding algorithms. Appl. Comput. Harmon. Anal. 2001, 11, 167–191. [Google Scholar] [CrossRef]
- DeVore, R.A. Nonlinear approximation. In Acta Numerica, 1998; Volume 7 of Acta Numer; Cambridge Univ. Press: Cambridge, UK, 1998; pp. 51–150. [Google Scholar]
- Autin, F. Point de vue Maxiset en Estimation Non Paramétrique. Ph.D. Thesis, Université Paris-Diderot-Paris VII, Paris, France, 2004. [Google Scholar]
- Gasser, T.; Hall, P.; Presnell, B. Nonparametric estimation of the mode of a distribution of random curves. J. R. Stat. Soc. Ser. B Stat. Methodol. 1998, 60, 681–691. [Google Scholar] [CrossRef]
- Donoho, D.L.; Johnstone, I.M.; Kerkyacharian, G.; Picard, D. Density estimation by wavelet thresholding. Ann. Statist. 1996, 24, 508–539. [Google Scholar] [CrossRef]
- Peškir, G. The uniform mean-square ergodic theorem for wide sense stationary processes. Stoch. Anal. Appl. 1998, 16, 697–720. [Google Scholar] [CrossRef]
- Ferraty, F.; Vieu, P. Nonparametric models for functional data, with application in regression, time-series prediction and curve discrimination. Nonparametric Stat. 2004, 16, 111–125. [Google Scholar] [CrossRef]
- Ferraty, F.; Vieu, P. The functional nonparametric model and application to spectrometric data. Comput. Statist. 2002, 17, 545–564. [Google Scholar] [CrossRef]
- Ouassou, I.; Rachdi, M. Regression operator estimation by delta-sequences method for functional data and its applications. AStA Adv. Stat. Anal. 2012, 96, 451–465. [Google Scholar] [CrossRef]
- Burkholder, D.L. Distribution function inequalities for martingales. Ann. Probab. 1973, 1, 19–42. [Google Scholar] [CrossRef]
- de la Peña, V.H.; Giné, E. Decoupling; Probability and Its Applications (New York); From dependence to independence, Randomly stopped processes. U-statistics and processes. Martingales and beyond; Springer: New York, NY, USA, 1999. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
DIDI, S.; AL HARBY, A.; BOUZEBDA, S. Wavelet Density and Regression Estimators for Functional Stationary and Ergodic Data: Discrete Time. Mathematics 2022, 10, 3433. https://doi.org/10.3390/math10193433
DIDI S, AL HARBY A, BOUZEBDA S. Wavelet Density and Regression Estimators for Functional Stationary and Ergodic Data: Discrete Time. Mathematics. 2022; 10(19):3433. https://doi.org/10.3390/math10193433
Chicago/Turabian StyleDIDI, Sultana, Ahoud AL HARBY, and Salim BOUZEBDA. 2022. "Wavelet Density and Regression Estimators for Functional Stationary and Ergodic Data: Discrete Time" Mathematics 10, no. 19: 3433. https://doi.org/10.3390/math10193433
APA StyleDIDI, S., AL HARBY, A., & BOUZEBDA, S. (2022). Wavelet Density and Regression Estimators for Functional Stationary and Ergodic Data: Discrete Time. Mathematics, 10(19), 3433. https://doi.org/10.3390/math10193433