Closed-Form Solutions in a Magneto-Electro-Elastic Circular Rod via Generalized Exp-Function Method
Abstract
:1. Introduction
2. Fundamental Equations
3. Longitudinal Wave Equations in a MEE Circular Rod
4. The Generalized Exp-Function Method
5. Applications
6. Results and Discussion
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Benjamin, T.B. The stability of solitary waves. Proc. R. Soc. A 1972, 328, 153–183. [Google Scholar]
- Xue, C.X.; Pan, E.; Zhang, S.Y. Solitary waves in a magneto-electro-elastic circular rod. Smart Mater. Struct. 2011, 20, 105010. [Google Scholar] [CrossRef]
- Kozhekin, A.; Kurizki, G. Self-induced transparency in Bragg reflectors: Gap solitons near absorption resonances. Phys. Rev. Lett. 1995, 74, 5020. [Google Scholar] [CrossRef]
- Vlasov, R.A.; Lemeza, A.M. Bistable moving optical solitons in resonant photonic crystals. Phys. Rev. A 2011, 84, 023828. [Google Scholar] [CrossRef]
- Russell, J.S. Report on Waves: Made to the Meetings of the British Association in 1842-43; John Murray: London, UK, 1845; pp. 311–390. [Google Scholar]
- Chen, J.Y.; Pan, E.; Chen, H.L. Wave propagation in magneto-electro-elastic multilayered plates. Int. J. Solids Struct. 2007, 44, 1073–1085. [Google Scholar] [CrossRef]
- Chen, P.; Shen, Y. Propagation of axial shear magneto–electro-elastic waves in piezoelectric–piezomagnetic composites with randomly distributed cylindrical inhomogeneities. Int. J. Solids Struct. 2007, 44, 1511–1532. [Google Scholar] [CrossRef]
- Wu, B.; Yu, J.G.; He, C.F. Wave propagation in non-homogeneous magneto-electro-elastic plates. J. Sound Vib. 2008, 317, 250–264. [Google Scholar]
- Seadawy, A.R. Nonlinear wave solutions of the three-dimensional Zakharov–Kuznetsov–Burgers equation in dusty plasma. Phys. A Stat. Mech. Its Appl. 2015, 439, 124–131. [Google Scholar] [CrossRef]
- Seadawy, A.R. Travelling-wave solutions of a weakly nonlinear two-dimensional higher-order Kadomtsev-Petviashvili dynamical equation for dispersive shallow-water waves. Eur. Phys. J. Plus 2017, 132, 1–13. [Google Scholar] [CrossRef]
- Abdullah; Seadawy, A.R.; Jun, W. Mathematical methods and solitary wave solutions of three-dimensional Zakharov-Kuznetsov-Burgers equation in dusty plasma and its applications. Results Phys. 2017, 7, 4269–4277. [Google Scholar] [CrossRef]
- Chen, Y.; Yan, Z.; Zhang, H. Exact Solutions for a Family of Variable-Coefficient “Reaction–Duffing” Equations via the Bäcklund Transformation. Theor. Math. Phys. 2002, 132, 970–975. [Google Scholar] [CrossRef]
- Manafian, J.; Lakestani, M. Optical solitons with Biswas-Milovic equation for Kerr law nonlinearity. Eur. Phys. J. Plus 2015, 130, 61. [Google Scholar] [CrossRef]
- Kourakis, I.; Moslem, W.M.; Abdelsalam, U.M.; Sabry, R.; Shukla, P.K. Nonlinear dynamics of rotating multi-component pair plasmas and epi plasmas. Plasma Fusion Res. 2009, 4, 018. [Google Scholar] [CrossRef]
- Seadawy, A.R. Modulation instability analysis for the generalized derivative higher order nonlinear Schrödinger equation and it’s the bright and dark soliton solutions. J. Electromagn. Waves Appl. 2017, 31, 1353–1362. [Google Scholar] [CrossRef]
- Seadawy, A.R.; El-Rashidy, K. Traveling wave solutions for some coupled nonlinear evolution equations. Math. Comput. Model. 2013, 57, 1371–1379. [Google Scholar] [CrossRef]
- Seadawy, A.R. Exact solutions of a two-dimensional nonlinear Schrödinger equation. Appl. Math. Lett. 2012, 25, 687–691. [Google Scholar] [CrossRef]
- Manafian, J.; Lakestani, M. Solitary wave and periodic wave solutions for Burgers, Fisher, Huxley and combined forms of these equations by the (G′/G)-expansion method. Pramana 2015, 85, 31–52. [Google Scholar] [CrossRef]
- Teymuri, S.C.; Manafian, J. Wave solutions for variants of the KdV–Burger and the K (n, n)–Burger equations by the generalized G′/G-expansion method. Math. Methods Appl. Sci. 2017, 40, 4350–4363. [Google Scholar] [CrossRef]
- Helal, M.A.; Seadawy, A.R.; Zekry, M.H. Stability analysis of solitary wave solutions for the fourth-order nonlinear Boussinesq water wave equation. Appl. Math. Comput. 2014, 232, 1094–1103. [Google Scholar] [CrossRef]
- He, W.; Chen, N.; Dassios, I.; Shah, N.A.; Chung, J.D. Fractional system of Korteweg-De Vries equations via Elzaki transform. Mathematics 2021, 9, 673. [Google Scholar] [CrossRef]
- Shah, N.A.; Agarwal, P.; Chung, J.D.; El-Zahar, E.R.; Hamed, Y.S. Analysis of optical solitons for nonlinear Schrödinger equation with detuning term by iterative transform method. Symmetry 2020, 12, 1850. [Google Scholar] [CrossRef]
- Shah, N.A.; Alyousef, H.A.; El-Tantawy, S.A.; Shah, R.; Chung, J.D. Analytical investigation of fractional-order Korteweg–De-Vries-type equations under Atangana–Baleanu–Caputo operator: Modeling nonlinear waves in a plasma and fluid. Symmetry 2022, 14, 739. [Google Scholar] [CrossRef]
- Seadawy, A.R.; Lu, D.; Khater, M.M.A. Bifurcations of solitary wave solutions for the three dimensional Zakharov–Kuznetsov–Burgers equation and Boussinesq equation with dual dispersion. Optik 2017, 143, 104–114. [Google Scholar] [CrossRef]
- Lu, D.; Seadawy, A.R.; Arshad, M.; Wang, J. New solitary wave solutions of (3+ 1)-dimensional nonlinear extended Zakharov-Kuznetsov and modified KdV-Zakharov-Kuznetsov equations and their applications. Results Phys. 2017, 7, 899–909. [Google Scholar] [CrossRef]
- Arshad, M.; Seadawy, A.R.; Lu, D. Exact bright–dark solitary wave solutions of the higher-order cubic–quintic nonlinear Schrödinger equation and its stability. Optik 2017, 138, 40–49. [Google Scholar] [CrossRef]
- Ghany, H.A. Exact solutions for stochastic fractional Zakharov-Kuznetsov equations. Chin. J. Phys. 2013, 51, 875–881. [Google Scholar]
- Arshad, M.; Seadawy, A.R.; Lu, D.; Wang, J. Travelling wave solutions of Drinfel’d–Sokolov–Wilson, Whitham–Broer–Kaup and (2+ 1)-dimensional Broer–Kaup–Kupershmit equations and their applications. Chin. J. Phys. 2017, 55, 780–797. [Google Scholar] [CrossRef]
- Ali, A.; Seadawy, A.R.; Lu, D. Soliton solutions of the nonlinear Schrödinger equation with the dual power law nonlinearity and resonant nonlinear Schrödinger equation and their modulation instability analysis. Optik 2017, 145, 79–88. [Google Scholar] [CrossRef]
- Seadawy, A.R. The generalized nonlinear higher order of KdV equations from the higher order nonlinear Schrödinger equation and its solutions. Optik 2017, 139, 31–43. [Google Scholar] [CrossRef]
- Rani, A.; Shakeel, M.; Kbiri Alaoui, M.; Zidan, A.M.; Shah, N.A.; Junsawang, P. Application of the Exp(−φ(ξ)) −Expansion Method to Find the Soliton Solutions in Biomembranes and Nerves. Mathematics 2022, 10, 3372. [Google Scholar] [CrossRef]
- Ali, A.; Seadawy, A.R.; Lu, D. Computational methods and traveling wave solutions for the fourth-order nonlinear Ablowitz-Kaup-Newell-Segur water wave dynamical equation via two methods and its applications. Open Phys. 2018, 16, 219–226. [Google Scholar] [CrossRef]
- Shang, Y. Lie algebraic discussion for affinity based information diffusion in social networks. Open Phys. 2017, 15, 705–711. [Google Scholar] [CrossRef]
- Shang, Y. Analytical solution for an in-host viral infection model with time-inhomogeneous rates. Acta Phys. Pol. B 2015, 46, 1567–1577. [Google Scholar] [CrossRef] [Green Version]
- Shang, Y. A lie algebra approach to susceptible-infected-susceptible epidemics. Electron. J. Differ. Eq. 2012, 2012, 1–7. [Google Scholar]
- Shakeel, M.; Attaullah; El-Zahar, E.R.; Shah, N.A.; Chung, J.D. Generalized Exp-Function Method to Find Closed Form Solutions of Nonlinear Dispersive Modified Benjamin–Bona–Mahony Equation Defined by Seismic Sea Waves. Mathematics 2022, 10, 1026. [Google Scholar] [CrossRef]
- Yahya, K.H.; Moussa, Z.A. New approach of generalized exp (− ϕ (ξ)) expansion method and its application to some nonlinear partial differential equation. J. Math. Res. 2015, 7, 106–121. [Google Scholar]
- Baskonus, H.M.; Bulut, H.; Atangana, A. On the complex and hyperbolic structures of the longitudinal wave equation in a magneto-electro-elastic circular rod. Smart Mater. Struct. 2016, 25, 035022. [Google Scholar] [CrossRef]
- Younis, M.; Ali, S. Bright, dark, and singular solitons in magneto-electro-elastic circular rod. Waves Random Complex Media 2015, 25, 549–555. [Google Scholar] [CrossRef]
- Ma, X.; Pan, Y.; Chang, L. Explicit travelling wave solutions in a magneto-electro-elastic circular rod. Int. J. Comput. Sci. Issues 2013, 10, 62. [Google Scholar]
- Khan, K.; Koppelaar, H.; Akbar, M.A. Exact and numerical soliton solutions to nonlinear wave equations. Casp. J. Comput. Math. Eng. 2016, 2, 5–22. [Google Scholar]
- Seadawy, A.R.; Manafian, J. New soliton solution to the longitudinal wave equation in a magneto-electro-elastic circular rod. Results Phys. 2018, 8, 1158–1167. [Google Scholar] [CrossRef]
Our Solutions | Baskonus et al. [38] |
---|---|
in Equation (52), then | in Equation (30), then |
in Equation (55), then | in Equation (28), then |
in Equation (58), then | in Equation (26), then |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shakeel, M.; Attaullah; Kbiri Alaoui, M.; Zidan, A.M.; Shah, N.A.; Weera, W. Closed-Form Solutions in a Magneto-Electro-Elastic Circular Rod via Generalized Exp-Function Method. Mathematics 2022, 10, 3400. https://doi.org/10.3390/math10183400
Shakeel M, Attaullah, Kbiri Alaoui M, Zidan AM, Shah NA, Weera W. Closed-Form Solutions in a Magneto-Electro-Elastic Circular Rod via Generalized Exp-Function Method. Mathematics. 2022; 10(18):3400. https://doi.org/10.3390/math10183400
Chicago/Turabian StyleShakeel, Muhammad, Attaullah, Mohammed Kbiri Alaoui, Ahmed M. Zidan, Nehad Ali Shah, and Wajaree Weera. 2022. "Closed-Form Solutions in a Magneto-Electro-Elastic Circular Rod via Generalized Exp-Function Method" Mathematics 10, no. 18: 3400. https://doi.org/10.3390/math10183400
APA StyleShakeel, M., Attaullah, Kbiri Alaoui, M., Zidan, A. M., Shah, N. A., & Weera, W. (2022). Closed-Form Solutions in a Magneto-Electro-Elastic Circular Rod via Generalized Exp-Function Method. Mathematics, 10(18), 3400. https://doi.org/10.3390/math10183400