Potentially Related Commodity Discovery Based on Link Prediction
Abstract
:1. Introduction
2. Related Work
2.1. Recommender System
2.2. Association Rules
2.3. Link Prediction
3. Link Prediction Based on Similarity
3.1. Local-Information-Based Similarity Index
3.2. Path-Based Similarity Index
3.3. Random-Walk-Based Similarity Index
3.4. Weight-Based Link Prediction Index
4. Potentially Related Commodity Discovery Algorithm
4.1. Network Construction
Algorithm 1. Build commodity-related network (BCRN). |
Retail transaction data: Parameters of association rules:
Adjacency matrix: A
|
4.2. Prediction Evaluation
Algorithm 2. Calculate , , and . |
Adjacency matrix: A Proportion of the probe set: Number of comparisons: n l of Precision: l Similarity index:
, ,
|
Algorithm 3. Potential related commodity discovery algorithm (PRCD), cset = PRCD . |
Retail transaction data: Parameters of association rules: the top N commodity set: N
potential related commodity set:
|
5. Experiment
5.1. Comparison of Prediction Accuracy
5.1.1. Similarity Index Based on Local Information
5.1.2. Path-Based Similarity Index
5.1.3. Similarity Index Based on Random Walk
5.1.4. Weighted Similarity Index
5.2. Potential Related Commodities
5.3. Comparison to Other Methods
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kocas, C.; Pauwels, K.; Bohlmann, J.D. Pricing Best Sellers and Traffic Generators: The Role of Asymmetric Cross-selling. J. Interact. Mark. 2018, 41, 28–43. [Google Scholar] [CrossRef]
- Knott, A.; Hayes, A.; Neslin, S.A. Next-product-to-buy models for cross-selling applications. J. Interact. Mark. 2002, 16, 59–75. [Google Scholar] [CrossRef]
- Wong, C.W.; Fu, W.C.; Wang, K. Data Mining for Inventory Item Selection with Cross-Selling Considerations. Data Min. Knowl. Discov. 2005, 11, 81–112. [Google Scholar] [CrossRef] [Green Version]
- Miswan, N.H.; Sulaiman, I.M.; Chan, C.S.; Ng, C.G. Association Rules Mining for Hospital Readmission: A Case Study. Mathematics 2021, 9, 2706. [Google Scholar] [CrossRef]
- Zhang, Z.; Huang, J.; Tan, Q. Association Rules Enhanced Knowledge Graph Attention Network. Knowl.-Based Syst. 2022, 239, 108038. [Google Scholar] [CrossRef]
- Telikani, A.; Gandomi, A.H.; Shahbahrami, A. A survey of evolutionary computation for association rule mining. Inf. Sci. 2020, 524, 318–352. [Google Scholar] [CrossRef]
- Liu, T.; Yin, X.; Ni, W. Next Basket Recommendation Model Based on Attribute-Aware Multi-Level Attention. IEEE Access 2020, 8, 153872–153880. [Google Scholar] [CrossRef]
- Chen, G.; Li, Z. A new method combining pattern prediction and preference prediction for next basket recommendation. Entropy 2021, 23, 1430. [Google Scholar] [CrossRef]
- AU Kim, J.K.; Moon, H.S.; An, B.J.; Choi, I.Y. A grocery recommendation for off-line shoppers. Online Inf. Rev. 2018, 42, 468–481. [Google Scholar] [CrossRef]
- Chen, Y.C.; Lee, G. An efficient projected database method for mining sequential association rules. In Proceedings of the 2010 Fifth International Conference on Digital Information Management (ICDIM), Thunder Bay, ON, Canada, 5–8 July 2010; IEEE: Piscataway, NJ, USA, 2010; pp. 274–278. [Google Scholar] [CrossRef]
- Liao, S.; Zou, T.; Chang, H. An Association Rules and Sequential Rules Based Recommendation System. In Proceedings of the 2008 4th International Conference on Wireless Communications, Networking and Mobile Computing, Dalian, China, 12–17 October 2008; IEEE: Piscataway, NJ, USA, 2008; pp. 1–4. [Google Scholar] [CrossRef]
- Lü, L.; Zhou, T. Link prediction in complex networks: A survey. Phys. Stat. Mech. Its Appl. 2011, 390, 1150–1170. [Google Scholar] [CrossRef] [Green Version]
- Biondi, G.; Franzoni, V. Discovering Correlation Indices for Link Prediction Using Differential Evolution. Mathematics 2020, 8, 2097. [Google Scholar] [CrossRef]
- Sarukkai, R.R. Link prediction and path analysis using Markov chains. Comput. Netw. 2000, 33, 377–386. [Google Scholar] [CrossRef]
- Yadav, R.; Rai, A. Incorporating communities’ structures in predictions of missing links. J. Intell. Inf. Syst. 2020, 55, 183–205. [Google Scholar] [CrossRef]
- Wang, G.; Wang, Y.; Li, J.; Liu, K. A multidimensional network link prediction algorithm and its application for predicting social relationships. J. Comput. Sci. 2021, 53, 101358. [Google Scholar] [CrossRef]
- Kumar, M.; Mishra, S.; Biswas, B. Features fusion based link prediction in dynamic neworks. J. Comput. Sci. 2022, 57, 101493. [Google Scholar] [CrossRef]
- Liu, J.; Xu, B.; Xu, X.; Xin, T. A link prediction algorithm based on label propagation. J. Comput. Sci. 2016, 16, 43–50. [Google Scholar] [CrossRef]
- Sharma, U.; Kandwal, S.; Khatri, S.K. A Link Prediction in Social Networks: A Fuzzy Cognitive Map Approach. In Ambient Communications and Computer Systems; Springer: Singapore, 2018; pp. 463–473. [Google Scholar] [CrossRef]
- Li, S.; Song, X.; Lu, H.; Zeng, L.; Shi, M.; Liu, F. Friend recommendation for cross marketing in online brand community based on intelligent attention allocation link prediction algorithm. Expert Syst. Appl. 2019, 139, 112839. [Google Scholar] [CrossRef]
- Kovács, I.A.; Luck, K.; Spirohn, K.; Wang, Y.; Pollis, C.; Schlabach, S.; Bian, W.; Kim, D.K.; Kishore, N.; Hao, T.; et al. Network-based prediction of protein interactions. Nat. Commun. 2019, 10, 1240. [Google Scholar] [CrossRef] [Green Version]
- Zhang, F.; Qi, S.; Liu, Q.; Mao, M.; Zeng, A. Alleviating the data sparsity problem of recommender systems by clustering nodes in bipartite networks. Expert Syst. Appl. 2020, 149, 113346. [Google Scholar] [CrossRef]
- Li, C.; Yang, Q.; Pang, B.; Chen, T.; Cheng, Q.; Liu, J. A Mixed Strategy of Higher-Order Structure for Link Prediction Problem on Bipartite Graphs. Mathematics 2021, 9, 3195. [Google Scholar] [CrossRef]
- Gharibshah, J.; Jalili, M. Connectedness of users–items networks and recommender systems. Appl. Math. Comput. 2014, 243, 578–584. [Google Scholar] [CrossRef]
- Lee, Y.L.; Zhou, T. Collaborative filtering approach to link prediction. Phys. Stat. Mech. Its Appl. 2021, 578, 126107. [Google Scholar] [CrossRef]
- Coscia, M.; Szell, M. Multiplex Graph Association Rules for Link Prediction. arXiv 2020, arXiv:2008.08351. [Google Scholar] [CrossRef]
- Kardan, A.A.; Ebrahimi, M. A novel approach to hybrid recommendation systems based on association rules mining for content recommendation in asynchronous discussion groups. Inf. Sci. 2013, 219, 93–110. [Google Scholar] [CrossRef]
- Ekstrand, M.D.; Riedl, J.T.; Konstan, J.A. Collaborative Filtering Recommender Systems. Found. Trends Hum.–Comput. Interact. 2011, 4, 81–173. [Google Scholar] [CrossRef]
- Lu, Q.; Guo, F. Personalized information recommendation model based on context contribution and item correlation. Measurement 2019, 142, 30–39. [Google Scholar] [CrossRef]
- Vinodhini, G.; Chandrasekaran, R.M. Measuring the quality of hybrid opinion mining model for e-commerce application. Measurement 2014, 55, 101–109. [Google Scholar] [CrossRef]
- Yi, S.; Liu, X. Machine learning based customer sentiment analysis for recommending shoppers, shops based on customers’review. Complex Intell. Syst. 2020, 6, 621–634. [Google Scholar] [CrossRef]
- Bobadilla, J.; Ortega, F.; Hernando, A.; Gutiérrez, A. Recommender systems survey. Knowl.-Based Syst. 2013, 46, 109–132. [Google Scholar] [CrossRef]
- Nilashi, M.; Ibrahim, O.; Bagherifard, K. A recommender system based on collaborative filtering using ontology and dimensionality reduction techniques. Expert Syst. Appl. 2018, 92, 507–520. [Google Scholar] [CrossRef]
- Yang, D.; Nie, Z.T.; Yang, F. Time-Aware CF and Temporal Association Rule-Based Personalized Hybrid Recommender System. J. Organ. End User Comput. 2021, 33, 19–34. [Google Scholar] [CrossRef]
- Li, H. Time works well: Dynamic time warping based on time weighting for time series data mining. Inf. Sci. 2021, 547, 592–608. [Google Scholar] [CrossRef]
- Esling, P.; Agon, C. Time-Series Data Mining. ACM Comput. Surv. 2012, 45, 1–34. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Liu, Z. Multivariate time series clustering based on complex network. Pattern Recognit. 2021, 115, 107919. [Google Scholar] [CrossRef]
- Lin, W.; Wu, X.; Wang, Z.; Wan, X.; Li, H. Topic Network Analysis Based on Co-Occurrence Time Series Clustering. Mathematics 2022, 10, 2846. [Google Scholar] [CrossRef]
- Li, H.; Wu, Y.J.; Chen, Y. Time is money: Dynamic-model-based time series data-mining for correlation analysis of commodity sales. J. Comput. Appl. Math. 2020, 370, 112659. [Google Scholar] [CrossRef]
- Chen, Z.; Fan, Z.; Sun, M. A multi-kernel support tensor machine for classification with multitype multiway data and an application to cross-selling recommendations. Eur. J. Oper. Res. 2016, 255, 110–120. [Google Scholar] [CrossRef]
- Mazeh, I.; Shmueli, E. A personal data store approach for recommender systems: Enhancing privacy without sacrificing accuracy. Expert Syst. Appl. 2020, 139, 112858. [Google Scholar] [CrossRef]
- Wang, C.; Zheng, Y.; Jiang, J.; Ren, K. Toward Privacy-Preserving Personalized Recommendation Services. Engineering 2018, 4, 21–28. [Google Scholar] [CrossRef]
- Hurley, N.; Zhang, M. Novelty and Diversity in top-N recommendation-Analysis and evaluation. ACM Trans. Internet Technol. 2010, 10, 14-1–14-30. [Google Scholar] [CrossRef]
- Wang, F.; Wen, Y.; Wu, R.; Liu, J.; Cao, B. Improving the novelty of retail commodity recommendations using multiarmed bandit and gradient boosting decision tree. Concurr. Comput. Pract. Exp. 2020, 32, e5703. [Google Scholar] [CrossRef]
- Xia, H.; Huang, K.; Liu, Y. Unexpected interest recommender system with graph neural network. Complex Intell. Syst. 2022. [Google Scholar] [CrossRef]
- Ghafari, S.M.; Tjortjis, C. A survey on association rules mining using heuristics. WIREs Data Min. Knowl. Discov. 2019, 9, e1307. [Google Scholar] [CrossRef]
- Han, X.; Jiang, F.; Needleman, J.; Zhou, H.; Yao, C.; lang Tang, Y. Comorbidity combinations in schizophrenia inpatients and their associations with service utilization: A medical record-based analysis using association rule mining. Asian J. Psychiatry 2022, 67, 102927. [Google Scholar] [CrossRef]
- Gakii, C.; Rimiru, R. Identification of cancer related genes using feature selection and association rule mining. Inform. Med. Unlocked 2021, 24, 100595. [Google Scholar] [CrossRef]
- Zai-Xiang, H.; Zhong-Mei, Z.; Tian-Zhong, H.; Yi-Feng, Z. Improved associative classification algorithm for multiclass imbalanced datasets. Pattern Recognit. Artif. Intell. 2015, 28, 922–929. [Google Scholar] [CrossRef]
- Liu, J.; Shi, D.; Li, G.; Xie, Y.; Li, K.; Liu, B.; Ru, Z. Data-driven and association rule mining-based fault diagnosis and action mechanism analysis for building chillers. Energy Build. 2020, 216, 109957. [Google Scholar] [CrossRef]
- Bohmer, K.; Rinderle-Ma, S. Mining association rules for anomaly detection in dynamic process runtime behavior and explaining the root cause to users. Inf. Syst. 2020, 90, 101438. [Google Scholar] [CrossRef]
- Zhou, Y.; Li, C.; Ding, L.; Sekula, P.; Love, P.E.; Zhou, C. Combining association rules mining with complex networks to monitor coupled risks. Reliab. Eng. Syst. Saf. 2019, 186, 194–208. [Google Scholar] [CrossRef]
- Agrawal, R.; Imieliński, T.; Swami, A. Mining Association Rules Between Sets of Items in Large Databases. ACM Sigmod Rec. 1993, 22, 207–216. [Google Scholar] [CrossRef]
- Han, J.; Jian, P.; Yin, Y.; Mao, R. Mining Frequent Patterns without Candidate Generation: A Frequent-Pattern Tree Approach. Data Min. Knowl. Discov. 2004, 8, 53–87. [Google Scholar] [CrossRef]
- Cózar, J.; delaOssa, L.; Gámez, J. Learning compact zero-order TSK fuzzy rule-based systems for high-dimensional problems using an Apriori + local search approach. Inf. Sci. 2018, 433, 1–16. [Google Scholar] [CrossRef]
- Baró, G.; Martĺnez-Trinidad, J.; Rosas, R.; Ochoa, J.; Cortés, M. A PSO-based algorithm for mining association rules using a guided exploration strategy. Pattern Recognit. Lett. 2020, 138, 8–15. [Google Scholar] [CrossRef]
- Tan, P.N.; Kumar, V.; Srivastava1, J. Indirect Association: Mining Higher Order Dependencies in Data. In Principles of Data Mining and Knowledge Discovery; Springer: Berlin/Heidelberg, Germany, 2000; pp. 632–637. [Google Scholar] [CrossRef] [Green Version]
- Wan, Q.; An, A. An efficient approach to mining indirect associations. J. Intell. Inf. Syst. 2006, 27, 135–158. [Google Scholar] [CrossRef]
- Ouyang, W.; Luo, S.; Huang, Q.; CIS. Discovery of Direct and Indirect Association Patterns in Large Transaction Databases. In Proceedings of the Computational Intelligence and Security (CIS), 2007 International Conference, Harbin, China, 15–19 December 2007; IEEE: Piscataway, NJ, USA, 2007; pp. 167–170. [Google Scholar] [CrossRef]
- Tan, P.N.; Kumar, V. Discovery of Indirect Associations from Web Usage Data. In Web Intelligence; Springer: Berlin/Heidelberg, Germany, 2003; pp. 128–152. [Google Scholar] [CrossRef]
- Kazienko, P. Product Recommendation in e-Commerce Using Direct and Indirect Confidence for Historical User Sessions. In Discovery Science; Suzuki, E., Arikawa, S., Eds.; Springer: Berlin/Heidelberg, Germany, 2004; pp. 255–269. [Google Scholar] [CrossRef] [Green Version]
- Zhang, M.; Chen, Y. Link Prediction Based on Graph Neural Networks. In Proceedings of the 32nd International Conference on Neural Information Processing Systems, Montreal, QC, Canada, 3–8 December 2018; Curran Associates Inc.: Sydney, Australia, 2018; pp. 5171–5181. [Google Scholar] [CrossRef]
- Ye, X.; Rockmore, D.; Kleinbaum, A.M. Hyperlink Prediction in Hypernetworks Using Latent Social Features. In Proceedings of the International Conference on Discovery Science, Singapore, 6–9 October 2013. [Google Scholar] [CrossRef]
- Zhang, M.; Cui, Z.; Jiang, S.; Chen, Y. Beyond Link Prediction: Predicting Hyperlinks in Adjacency Space. In Proceedings of the Association for the Advancement of Artificial Intelligence, New Orleans, LA, USA, 2–7 February 2018. [Google Scholar]
- Pan, L.; Shang, H.J.; Li, P.; Dai, H.; Wang, W.; Tian, L. Predicting hyperlinks via hypernetwork loop structure. EPL 2021, 135, 48005. [Google Scholar] [CrossRef]
- Xiao, G.; Liao, J.; Tan, Z.; Zhang, X.; Zhao, X. A Two-Stage Framework for Directed Hypergraph Link Prediction. Mathematics 2022, 10, 2372. [Google Scholar] [CrossRef]
- Leicht, E.; Holme, P.; Newman, M. Vertex similarity in networks. Phys. Rev. E 2006, 73, 026120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ravasz, E.; Somera, A.L.; Mongru, D.A.; Oltvai, Z.N.; Barabási, A.L. Hierarchical organization of modularity in metabolic networks. Science 2002, 297, 1551–1555. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jaccard, P. Etude comparative de la distribution florale dans une portion des Alpes et des Jura. Bull. SociéTé Vaudoise Des Sci. Nat. 1901, 37, 547–579. [Google Scholar] [CrossRef]
- Barabási, A.L.; Albert, R. Emergence of scaling in random networks. Science 1999, 286, 509–512. [Google Scholar] [CrossRef] [Green Version]
- Adamic, L.; Adar, E. Friends and neighbors on the Web. Soc. Netw. 2003, 25, 211–230. [Google Scholar] [CrossRef]
- Zhou, T.; Lü, L.; Zhang, Y.C. Predicting missing links via local information. Eur. Phys. J. B 2009, 71, 623–630. [Google Scholar] [CrossRef] [Green Version]
- Lü, L.; Jin, C.H.; Zhou, T. Similarity index based on local paths for link prediction of complex networks. Phys. Rev. E 2009, 80, 046122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Katz, L. A new status index derived from sociometric analysis. Psychometrika 1953, 18, 39–43. [Google Scholar] [CrossRef]
- Klein, D.; Randić, M. Resistance distance. J. Math. Chem. 1993, 12, 81–95. [Google Scholar] [CrossRef]
- Fouss, F.; Pirotte, A.; Renders, J.M.; Saerens, M. Random-walk computation of similarities between nodes of a graph with application to collaborative recommendation. IEEE Trans. Knowl. Data Eng. 2007, 19, 355–369. [Google Scholar] [CrossRef]
- Brin, S.; Page, L. The anatomy of a large-scale hypertextual Web search engine. Comput. Netw. 2012, 56, 3825–3833. [Google Scholar] [CrossRef]
- Jeh, G.; Widom, J. SimRank: A measure of structural-context similarity. In Proceedings of the 8th ACM(Association for Computing Machinery) SIGKDD(Special Interest Group on Knowledge Discovery and Data Mining) International Conference on Knowledge Discovery and Data Mining, Edmonton, AB, Canada, 23–26 July 2002; pp. 538–543. [Google Scholar] [CrossRef]
- Liu, W.; Lü, L. Link prediction based on local random walk. Europhys. Lett. 2010, 89, 58007. [Google Scholar] [CrossRef] [Green Version]
- Lü, L.; Zhou, T. Link prediction in weighted networks: The role of weak ties. Europhys. Lett. 2010, 89, 18001. [Google Scholar] [CrossRef]
Index | Equation | Index | Equation |
---|---|---|---|
CN | HPI | ||
Salton | HDI | ||
Sorenson | PA | ||
LHN-I | Jaccard | ||
AA | RA |
Index | Equation |
---|---|
LP | |
Katz | |
LHN-II |
Index | Equation |
---|---|
ACT | |
Cos+ | |
RWR | |
SimR | |
LRW | |
SRW |
Index | Equation |
---|---|
WCN | |
WAA | |
WRA |
InvoiceNo | StockCode | Description | CustomerID |
---|---|---|---|
536371 | 22086 | PAPER CHAIN KIT 50’S CHRISTMAS | 13748 |
536372 | 22632 | HAND WARMER RED POLKA DOT | 17850 |
536372 | 22633 | HAND WARMER UNION JACK | 17850 |
536373 | 85123A | WHITE HANGING HEART T-LIGHT HOLDER | 17850 |
536373 | 71053 | WHITE METAL LANTERN | 17850 |
536373 | 84406B | CREAM CUPID HEARTS COAT HANGER | 17850 |
536373 | 20679 | EDWARDIAN PARASOL RED | 17850 |
536373 | 37370 | RETRO COFFEE MUGS ASSORTED | 17850 |
536373 | 21871 | SAVE THE PLANET MUG | 17850 |
LHS RHS | Sup | Conf | Lift | Count | |
---|---|---|---|---|---|
1 | 21499 ⇒ 21500 | 0.0051 | 0.5982 | 72.7357 | 131 |
2 | 21500 ⇒ 21499 | 0.0051 | 0.6150 | 72.7357 | 131 |
3 | 23127 ⇒ 23126 | 0.0056 | 0.7360 | 64.1867 | 145 |
4 | 23126 ⇒ 23127 | 0.0056 | 0.4882 | 64.1867 | 145 |
5 | 21987 ⇒ 21988 | 0.0052 | 0.7803 | 104.7201 | 135 |
6 | 21988 ⇒ 21987 | 0.0052 | 0.6995 | 104.7201 | 135 |
7 | 22635 ⇒ 22634 | 0.0051 | 0.6517 | 68.8984 | 131 |
8 | 22634 ⇒ 22635 | 0.0051 | 0.5347 | 68.8984 | 131 |
9 | 21244 ⇒ 21240 | 0.0054 | 0.6965 | 54.6661 | 140 |
10 | 21240 ⇒ 21244 | 0.0054 | 0.4242 | 54.6661 | 140 |
Network | Nodes | Edges | Average Degree | Density | Average Clustering Coefficient |
---|---|---|---|---|---|
A | 437 | 3606 | 16.5040 | 0.0380 | 0.7470 |
B | 157 | 744 | 9.4780 | 0.0610 | 0.7070 |
C | 95 | 360 | 7.5580 | 0.0400 | 0.6820 |
Index | Network A | Network B | Network C |
---|---|---|---|
CN | 0.9529 | 0.9279 | 0.9259 |
Salton | 0.9348 | 0.9250 | 0.9073 |
Jaccard | 0.9299 | 0.9253 | 0.9093 |
Sorenson | 0.9300 | 0.9229 | 0.9075 |
HPI | 0.9261 | 0.9144 | 0.9225 |
HDI | 0.9035 | 0.9078 | 0.9051 |
LHN-I | 0.8507 | 0.8882 | 0.8757 |
PA | 0.9057 | 0.8337 | 0.7994 |
AA | 0.9595 | 0.9426 | 0.9181 |
RA | 0.9601 | 0.9441 | 0.9317 |
LP | 0.9399 | 0.9221 | 0.9088 |
Katz | 0.9387 | 0.9114 | 0.8940 |
LHN-II | 0.5006 | 0.5047 | 0.5042 |
ACT | 0.9145 | 0.8511 | 0.8415 |
Cos+ | 0.9431 | 0.8688 | 0.8806 |
RWR | 0.9565 | 0.9355 | 0.9166 |
SimR | 0.8637 | 0.8732 | 0.8756 |
LWR | 0.9566 | 0.9480 | 0.9415 |
SRW | 0.9753 | 0.9738 | 0.9657 |
WCN | 0.9627 | 0.9447 | 0.9354 |
WRA | 0.9630 | 0.9398 | 0.9416 |
WAA | 0.9682 | 0.9528 | 0.9421 |
Target Commodity | Similar Commodities | Description of Similar Commodities | Similarity |
---|---|---|---|
21086 | 22356 | CHARLOTTE BAG PINK POLKADOT | 0.1345 |
22384 | LUNCH BAG PINK POLKADOT | 0.1349 | |
22379 | RECYCLING BAG RETROSPOT | 0.1358 | |
20712 | JUMBO BAG WOODLAND ANIMALS | 0.1532 | |
22720 | SET OF 3 CAKE TINS PANTRY DESIGN | 0.1596 | |
22960 | JAM MAKING SET WITH JARS | 0.1616 | |
22423 | REGENCY CAKESTAND 3 TIER | 0.1627 | |
22457 | NATURAL SLATE HEART CHALKBOARD | 0.1676 | |
22666 | RECIPE BOX PANTRY YELLOW DESIGN | 0.1713 | |
20719 | WOODLAND CHARLOTTE BAG | 0.1714 | |
22355 | CHARLOTTE BAG SUKI DESIGN | 0.1790 | |
22411 | JUMBO SHOPPER VINTAGE RED PAISLEY | 0.1821 | |
22961 | JAM MAKING SET PRINTED | 0.1826 | |
85123A | WHITE HANGING HEART T-LIGHT HOLDER | 0.1984 | |
22386 | JUMBO BAG PINK POLKADOT | 0.2006 | |
20724 | RED RETROSPOT CHARLOTTE BAG | 0.2069 | |
20727 | LUNCH BAG BLACK SKULL | 0.2074 | |
21931 | JUMBO STORAGE BAG SUKI | 0.2086 | |
22383 | LUNCH BAG SUKI DESIGN | 0.2113 | |
47566 | PARTY BUNTING | 0.7013 |
Dataset | #Users | #Items | #Rows | AUC |
---|---|---|---|---|
Delicious | 1867 | 69,226 | 437,593 | 0.7801 |
Lastfm | 1892 | 17,632 | 92,834 | 0.9646 |
BX | 4186 | 7733 | 182,057 | 0.9517 |
ML100K | 943 | 1682 | 100,000 | 0.9514 |
Method | Dataset | |||||||
---|---|---|---|---|---|---|---|---|
UASir | NS | PB | Yeast | C.ele | Power | Router | E. coil | |
CN | 0.9380 | 0.9442 | 0.9242 | 0.8937 | 0.8513 | 0.5880 | 0.5643 | 0.9371 |
Jaccard | 0.8979 | 0.9443 | 0.8741 | 0.8932 | 0.8019 | 0.5879 | 0.5640 | 0.8131 |
PA | 0.8884 | 0.6865 | 0.9014 | 0.8220 | 0.7479 | 0.4433 | 0.4758 | 0.9182 |
AA | 0.9506 | 0.9445 | 0.9236 | 0.8943 | 0.8695 | 0.5879 | 0.5643 | 0.9536 |
RA | 0.9577 | 0.9445 | 0.9246 | 0.8945 | 0.8749 | 0.5879 | 0.5643 | 0.9595 |
Katz | 0.9288 | 0.9485 | 0.9292 | 0.9224 | 0.8634 | 0.6539 | 0.3862 | 0.9350 |
SEAL | 0.9662 | 0.9885 | 0.9472 | 0.9791 | 0.9030 | 0.8761 | 0.9638 | 0.9764 |
PRCD | 0.9775 | 0.9306 | 0.9264 | 0.9899 | 0.9361 | 0.8527 | 0.9434 | 0.9894 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wan, X.; Chen, F.; Li, H.; Lin, W. Potentially Related Commodity Discovery Based on Link Prediction. Mathematics 2022, 10, 3713. https://doi.org/10.3390/math10193713
Wan X, Chen F, Li H, Lin W. Potentially Related Commodity Discovery Based on Link Prediction. Mathematics. 2022; 10(19):3713. https://doi.org/10.3390/math10193713
Chicago/Turabian StyleWan, Xiaoji, Fen Chen, Hailin Li, and Weibin Lin. 2022. "Potentially Related Commodity Discovery Based on Link Prediction" Mathematics 10, no. 19: 3713. https://doi.org/10.3390/math10193713
APA StyleWan, X., Chen, F., Li, H., & Lin, W. (2022). Potentially Related Commodity Discovery Based on Link Prediction. Mathematics, 10(19), 3713. https://doi.org/10.3390/math10193713