Analysis and Performance Evaluation of a Novel Adjustable Speed Drive with a Homopolar-Type Rotor
Abstract
:1. Introduction
2. Structure and Operation Principles
2.1. Structure
2.2. Operation Principle
3. The Equivalent Circuit for Analysis and the Analytical Calculation of Key Parameters
3.1. The Equivalent Circuit for Analysis and the Calculation of Output Torque
3.2. Calculation of Air Gap Magnetic Field Parameters
3.3. Calculation of Excitation Winding Parameters
3.4. Calculation of Armature Winding Parameters
3.5. Magnetic Circuit Calculation
3.6. Summary of the Analysis and Design Method of the HTR-ASD
- (1)
- When the torque and speed requirements are determined, the key parameters of an HTR-ASD can be obtained using the equivalent circuit and expression (9).
- (2)
- When the key parameters, like and , are determined, the rotor shape and the winding parameters can be determined by , , , and expressions (25) and (26).
- (3)
- To consider the influence of different position saturation on the calculation of inductance parameters, a MEC can be used. By using expression (31), the influence of different position saturation on the calculation of inductance parameters can be taken into consideration.
- (4)
- As for the dynamic characteristics of the HTR-ASD, the s-function simulation model can be established based on expressions (2) and (3).
4. Performance Analysis
4.1. Prototype Design and FEM Analysis
4.2. Speed Regulation Characteristics
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Dai, X.; Liang, Q.H.; Cao, J.Y.; Long, Y.J.; Mo, J.Q.; Wang, S. Analytical Modeling of Axial-Flux Permanent Magnet Eddy Current Couplings with a Slotted Conductor Topology. IEEE Trans. Magn. 2017, 52, 1–15. [Google Scholar] [CrossRef]
- Mohammadi, S.; Mirsalim, M.; Vaez-Zadeh, S.; Talebi, H.A. Analytical Modeling and Analysis of Axial-Flux Interior Permanent-Magnet Couplers. IEEE Trans. Ind. Electron. 2014, 61, 5940–5947. [Google Scholar] [CrossRef]
- Erasmus, A.S.; Kamper, M.J. Computationally Efficient Analysis of Double PM-Rotor Radial-Flux Eddy Current Couplers. IEEE Trans. Ind. Applicat. 2017, 53, 3519–3527. [Google Scholar] [CrossRef]
- Aydin, M.; Huang, S.; Lipo, T.A. Design, analysis, and control of a hybrid field-controlled axial-flux permanent-magnet motor. IEEE Trans. Ind. Electron. 2010, 57, 78–87. [Google Scholar] [CrossRef]
- Mohammadi, S.; Kirtley, J.; Azari, M.N. Modelling of axial-flux eddy-current couplers. IET Electr. Power Appl. 2020, 14, 1238–1246. [Google Scholar] [CrossRef]
- Li, Y.; Lin, H.; Tao, Q.; Lu, X.; Yang, H.; Fang, S.; Wang, H. Analytical analysis of an adjustable-speed permanent magnet eddy-current coupling with a non-rotary mechanical flux adjuster. IEEE Trans. Magn. 2019, 55, 1–5. [Google Scholar] [CrossRef]
- Tsao, P.; Senesky, M.; Sanders, S.R. An integrated flywheel energy storage system with homopolar inductor motor/generator and high-frequency drive. IEEE Trans. Ind. Applicat. 2003, 39, 1710–1725. [Google Scholar] [CrossRef] [Green Version]
- Severson, E.; Nilssen, R.; Undeland, T.; Mohan, N. Outer-rotor ac homopolar motors for flywheel energy storage. In Proceedings of the 7th IET International Conference on Power Electronics, Machines and Drives, Manchester, UK, 8–10 April 2014; pp. 1–6. [Google Scholar]
- Severson, E.; Nilssen, R.; Undeland, T.; Mohan, N. Dual-Purpose No-Voltage Winding Design for the Bearingless AC Homopolar and Consequent Pole Motors. IEEE Trans. Ind. Appl. 2015, 51, 2884–2895. [Google Scholar] [CrossRef]
- Yang, J.T.; Li, Q.; Huang, S.D.; Ye, C.Y.; Liu, P.; Ma, B.; Wang, L. Design and Analysis of a Novel Permanent Magnet Homopolar Inductor Machine with Mechanical Flux Modulator for Flywheel Energy Storage System. IEEE Trans. Ind. Electron. 2022, 69, 7744–7755. [Google Scholar] [CrossRef]
- Asama, J.; Chiba, A. Performance Evaluation of a Homopolar Bearingless Motor for Ultrahigh Speed Applications. IEEE Trans. Ind. Appl. 2021, 57, 6913–6920. [Google Scholar] [CrossRef]
- Dmitrievskii, V.; Prakht, V.; Anuchin, A.; Kazakbaev, V. Traction Synchronous Homopolar Motor: Simplified Computation Technique and Experimental Validation. IEEE Access 2020, 8, 185112–185120. [Google Scholar] [CrossRef]
- Kalsi, S.; Hamilton, K.; Buckley, R.G.; Badcock, R.A. Superconducting AC Homopolar Machines for High-Speed Applications. Energies 2019, 12, 86. [Google Scholar] [CrossRef] [Green Version]
- Dmitrievskii, V.; Prakht, V.; Kazakbaev, V.; Anuchin, A. Comparison of Interior Permanent Magnet and Synchronous Homopolar Motors for a Mining Dump Truck Traction Drive Operated in Wide Constant Power Speed Range. Mathematics 2022, 10, 1581. [Google Scholar] [CrossRef]
- Aberoomand, V.; Mirsalim, M.; Fesharakifard, R. Design optimization of double-sided permanent-magnet axial eddy-current couplers for use in dynamic applications. IEEE Trans. Energy Convers. 2019, 34, 909–920. [Google Scholar] [CrossRef]
- Li, Z.; Wang, D.Z.; Zheng, D. Accurate Prediction and Analysis of Electromagnetic Fields and Forces in Flux-Focusing Eddy Current Coupling With Double Slotted Conductor Rotors. IEEE Access 2018, 6, 37685–37699. [Google Scholar] [CrossRef]
- Dong, K.; Yu, H.T.; Hu, M.Q.; Liu, J.; Huang, L.; Zhou, J.H. Study of axial-flux-type superconducting eddy-current couplings. IEEE Trans. Appl. Supercond. 2017, 27, 1–5. [Google Scholar] [CrossRef]
- Le, Y.Z.; Liu, Y.P.; Li, D.S. Performance analysis and optimization of liquid-cooled and flywheel-type eddy current retarder. IEEE Trans. Magn. 2019, 55, 1–5. [Google Scholar]
- Guo, W.G.; Li, D.S.; Ye, L.Z. A model of magnetic field and braking torque in liquid-cooled permanent-magnet retarder accounting for the skin effect on permeability. IEEE Trans. Veh. Technol. 2019, 68, 10618–10626. [Google Scholar] [CrossRef]
- Telezing, B.; Yang, C.J.; Ombolo, P.; Peng, Z.Z.; Tai, J.X.; Zhu, L. Torque Characteristics Analysis of a Novel Hybrid Superconducting Magnetic Coupling With Axial-Flux Using a Magnetic Equivalent Circuit Model. IEEE Access 2022, 10, 45594–45604. [Google Scholar] [CrossRef]
- Wang, J.; Zhu, J. A simple method for performance prediction of permanent magnet eddy current couplings using a new magnetic equivalent circuit model. IEEE Trans. Ind. Electron. 2018, 65, 2487–2495. [Google Scholar] [CrossRef]
- Guo, B.Z.; Li, D.S.; Shi, J.R.; Gao, Z.W. A Performance Prediction Model for Permanent Magnet Eddy-Current Couplings Based on the Air-Gap Magnetic Field Distribution. IEEE Trans. Magn. 2022, 58, 1–9. [Google Scholar] [CrossRef]
- Ye, C.Y.; Yang, J.T.; Xiong, F.; Zhu, Z.Q. Relationship between Homopolar Inductor Machine and Wound-Field Synchronous Machine. IEEE Trans. Ind. Electron. 2020, 67, 919–930. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.T.; Ye, C.; Xu, W.; Liang, X.; Li, W. Investigation of a Two-Dimensional Analytical Model of the Homopolar Inductor Alternator. IEEE Trans. Appl. Supercond. 2018, 28, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.T.; Li, Q.; Feng, Y.J.; Liu, P.; Huang, S.D.; Wang, L. Simulation and Experimental Analysis of a Mechanical Flux Modulated Permanent Magnet Homopolar Inductor Machine. IEEE Trans. Transport. Electrif. 2022, 8, 2629–2639. [Google Scholar] [CrossRef]
- Severson, E.; Nilssen, R.; Undeland, T.; Mohan, N. Magnetic Equivalent Circuit Modeling of the AC Homopolar Machine for Flywheel Energy Storage. IEEE Trans. Energy Convers. 2015, 30, 1670–1678. [Google Scholar] [CrossRef]
- Yang, J.T.; Ye, C.Y.; Huang, S.D.; Li, Y.; Xiong, F.; Zhou, Y.; Xu, W. Analysis of the Electromagnetic Performance of Homopolar Inductor Machine Through Nonlinear Magnetic Equivalent Circuit and Air-Gap Permeance Function. IEEE Trans. Ind. Appl. 2020, 56, 267–276. [Google Scholar] [CrossRef]
- Lubin, T.; Rezzoug, A. Steady-State and Transient Performance of Axial-Field Eddy-Current Coupling. IEEE Trans. Ind. Electron. 2015, 62, 2287–2296. [Google Scholar] [CrossRef] [Green Version]
- Jin, Y.X.; Kou, B.Q.; Li, L.Y. Improved Analytical Modeling of an Axial Flux Double-Sided Eddy-Current Brake with Slotted Conductor Disk. IEEE Trans. Ind. Electron. 2022, 69, 13277–13286. [Google Scholar] [CrossRef]
- Yang, C.J.; Peng, Z.Z.; Tai, J.X.; Zhu, L.; Telezing, B.J.K.; Ombolo, P.D. Torque Characteristics Analysis of Slotted-Type Eddy-Current Couplings Using a New Magnetic Equivalent Circuit Model. IEEE Trans. Magn. 2020, 56, 1–8. [Google Scholar] [CrossRef]
- Lou, Z.X.; He, Y.G.; Cheng, Y.; Ye, C.Y.; Yu, K.X. Analytical calculation of d- and q-axis synchronous reactances of homopolar inductor alternator. In Proceedings of the 2014 17th International Symposium on Electromagnetic Launch Technology, La Jolla, CA, USA, 7–11 July 2014; pp. 1–8. [Google Scholar]
- Li, Y.B.; Lin, H.Y.; Yang, H. A Novel Squirrel-Cage Rotor Permanent Magnet Adjustable Speed Drive with a Non-Rotary Mechanical Flux Adjuster. IEEE Trans. Energy Convers. 2021, 36, 1036–1044. [Google Scholar] [CrossRef]
Parameter | Value | Unit |
---|---|---|
Pole-pair numbers of the HTR | 5 | - |
The slot numbers of the squirrel-cage rotor | 48 | - |
Air gap length between the squirrel cage and the HTR | 1 | mm |
Air gap length between the squirrel cage and the shell | 1 | mm |
The diameter of the HTR | 120 | mm |
The inner diameter of the shell | 182 | mm |
The length of the shaft | 30 | mm |
Total length | 150 | mm |
The turns of excitation winding | 400 | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, S.; Yi, Z.; Liu, P.; Wang, G.; Lai, H.; Yu, K.; Xie, X. Analysis and Performance Evaluation of a Novel Adjustable Speed Drive with a Homopolar-Type Rotor. Mathematics 2022, 10, 3712. https://doi.org/10.3390/math10193712
Guo S, Yi Z, Liu P, Wang G, Lai H, Yu K, Xie X. Analysis and Performance Evaluation of a Novel Adjustable Speed Drive with a Homopolar-Type Rotor. Mathematics. 2022; 10(19):3712. https://doi.org/10.3390/math10193712
Chicago/Turabian StyleGuo, Songlin, Zhengkang Yi, Pan Liu, Guoshuai Wang, Houchuan Lai, Kexun Yu, and Xianfei Xie. 2022. "Analysis and Performance Evaluation of a Novel Adjustable Speed Drive with a Homopolar-Type Rotor" Mathematics 10, no. 19: 3712. https://doi.org/10.3390/math10193712
APA StyleGuo, S., Yi, Z., Liu, P., Wang, G., Lai, H., Yu, K., & Xie, X. (2022). Analysis and Performance Evaluation of a Novel Adjustable Speed Drive with a Homopolar-Type Rotor. Mathematics, 10(19), 3712. https://doi.org/10.3390/math10193712