Bounds for Statistical Curvatures of Submanifolds in Kenmotsu-like Statistical Manifolds
Abstract
:1. Introduction
2. Preliminaries
3. Bounds for Normalized Scalar Curvature
4. Optimizations on a Statistical Submanifold with Casorati Curvatures
- (1)
- For
- (2)
- For
5. Bounds for the Normalized Normal Scalar Curvature
6. Some Geometric Applications
- 1.
- and;
- 2.
- and;
- 3.
- .
7. Related Examples
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Amari, S. Differential-Geometrical Methods in Statistics. Lect. Notes Stats. 1985, 28, 1. [Google Scholar]
- Casorati, F. Mesure de la courbure des surfaces suivant l’idée commune. Acta Math. 1890, 14, 95–110. (In French) [Google Scholar] [CrossRef]
- Lee, C.W.; Yoon, D.W.; Lee, J.W. A pinching theorem for statistical manifolds with Casorati curvatures. J. Nonlinear Sci. Appl. 2017, 10, 4908–4914. [Google Scholar] [CrossRef] [Green Version]
- Siddiqui, A.N.; Shahid, M.H. Optimizations on Statistical Hypersurfaces with Casorati Curvatures. Kragujevac J. Math. 2021, 45, 449–463. [Google Scholar] [CrossRef]
- Decu, S.; Haesen, S.; Verstraelen, L.; Vilcu, G.E. Curvature Invariants of Statistical Submanifolds in Kenmotsu Statistical Manifolds of Constant ϕ-Sectional Curvature. Entropy 2018, 20, 529. [Google Scholar] [CrossRef] [Green Version]
- Siddiqui, A.N.; Chen, B.Y.; Bahadir, O. Statistical solitons and inequalities for statistical warped product submanifolds. Mathematics 2019, 7, 797. [Google Scholar] [CrossRef] [Green Version]
- Wintgen, P. Sur l’ine´galite´ de Chen-Willmore. CR Acad. Sci. Paris 1979, 288, 993–995. [Google Scholar]
- DeSmet, P.J.; Dillen, F.; Verstraelen, L.; Vrancken, L. A pointwise inequality in submanifold theory. Arch. Math. 1999, 35, 115–128. [Google Scholar]
- Lu, Z. Normal scalar curvature conjecture and its applications. J. Funct. Anal. 2011, 261, 1284–1308. [Google Scholar] [CrossRef] [Green Version]
- Ge, J.; Tang, Z. A proof of the DDVV conjecture and its equality case. Pac. J. Math. 2008, 237, 87–95. [Google Scholar] [CrossRef] [Green Version]
- Aydin, M.E.; Mihai, A.; Mihai, I. Generalized Wintgen inequality for statistical submanifolds in statistical manifolds of constant curvature. Bull. Math. Sci. 2017, 7, 155–166. [Google Scholar] [CrossRef]
- Chen, B.Y. Recent Developments in Wintgen Inequality and Wintgen Ideal Submanifolds. Int. Electron. J. Geom. 2021, 1, 6–45. [Google Scholar] [CrossRef]
- Murathan, C.; Ṣahin, B. A study of Wintgen like inequality for submanifolds in statistical warped product manifolds. J. Geom. 2018, 109, 1–18. [Google Scholar] [CrossRef]
- Siddiqui, A.N.; Shahid, M.H. On totally real statistical submanifolds. Filomat 2018, 32, 11. [Google Scholar] [CrossRef] [Green Version]
- Siddiqui, A.N.; Siddiqi, M.D.; Alkhaldi, A.H.; Ali, A. Lower Bounds on Statistical Submersions with vertical Casorati curvatures. Int. J. Geom. Methods Modern Phys. 2021. [Google Scholar] [CrossRef]
- Takano, K. Statistical manifolds with almost complex structures and its statistical submerions. Tensor. New Ser. 2004, 65, 123–137. [Google Scholar]
- Takano, K. Statistical manifolds with almost contact structures and its statistical submersions. J. Geom. 2006, 85, 171–187. [Google Scholar] [CrossRef] [Green Version]
- Kenmotsu, K. A class of almost contact Riemannian manifolds. Tohoku Math. J. 1972, 24, 93–103. [Google Scholar] [CrossRef]
- Siddiqi, M.D.; Siddiqui, A.N.; Aytimur, H. A Study of Kenmotsu-Like Statistical Submersions; preprints; 2022. [Google Scholar]
- Vos, P.W. Fundamental equations for statistical submanifolds with applications to the Bartlett correction. Ann. Inst. Stat. Math. 1989, 41, 429–450. [Google Scholar] [CrossRef]
- Opozda, B. Bochner’s technique for statistical structures. Ann. Glob. Anal. Geom. 2015, 48, 357–395. [Google Scholar] [CrossRef] [Green Version]
- Opozda, B. A sectional curvature for statistical structures. Linear Algebra Appl. 2016, 497, 134–161. [Google Scholar] [CrossRef] [Green Version]
- Yano, K.; Kon, M. Structures on Manifolds; Worlds Scientific: Singapore, 1984. [Google Scholar]
- Tripathi, M.M. Inequalities for algebraic Casorati curvatures and their applications. Note Mat. 2017, 37, 161–186. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Siddiqui, A.N.; Siddiqi, M.D.; Alkhaldi, A.H. Bounds for Statistical Curvatures of Submanifolds in Kenmotsu-like Statistical Manifolds. Mathematics 2022, 10, 176. https://doi.org/10.3390/math10020176
Siddiqui AN, Siddiqi MD, Alkhaldi AH. Bounds for Statistical Curvatures of Submanifolds in Kenmotsu-like Statistical Manifolds. Mathematics. 2022; 10(2):176. https://doi.org/10.3390/math10020176
Chicago/Turabian StyleSiddiqui, Aliya Naaz, Mohd Danish Siddiqi, and Ali Hussain Alkhaldi. 2022. "Bounds for Statistical Curvatures of Submanifolds in Kenmotsu-like Statistical Manifolds" Mathematics 10, no. 2: 176. https://doi.org/10.3390/math10020176
APA StyleSiddiqui, A. N., Siddiqi, M. D., & Alkhaldi, A. H. (2022). Bounds for Statistical Curvatures of Submanifolds in Kenmotsu-like Statistical Manifolds. Mathematics, 10(2), 176. https://doi.org/10.3390/math10020176