The Existence of Solutions for Local Dirichlet (r(u),s(u))-Problems
Abstract
:1. Introduction
2. Mathematical Background
- (i)
- ;
- (ii)
- if , then ;
- (iii)
- if , then .
- is a bounded domain with being Lipschitz-continuous;
- is log-Hölder continuous (that is, there exists such that
3. Carathéodory Nonlinearity
- (i)
- is continuous, bounded, and strictly monotone;
- (ii)
- is an operator of type , that is, if in and , then in ;
- (iii)
- is coercive;
- (iv)
- is a homeomorphism.
- (i)
- for a.e. , all with ;
- (ii)
- for such that for all , there exists sufficiently small enough to have , for a.e. , all .
- (AR)
- there exist and satisfying “” for a.e. and all ,
4. Sobolev-Type Nonlinearity
- (i)
- for a.e. and all ,
- (ii)
- , a.e. in Ω,
- (iii)
- in ,
- (iv)
- , for some without n-dependence.
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Růžička, M. Electrorheological Fluids: Modeling and Mathematical Theory; Lecture Notes in Mathematics; Springer: Berlin, Germany, 2000; Volume 1748. [Google Scholar]
- Cruz-Uribe, D.; Fiorenza, A. Variable Lebesgue Spaces. Foundations and Harmonic Analysis; Springer: Heidelberg, Germany, 2013. [Google Scholar]
- Diening, L.; Harjulehto, P.; Hästö, P.; Růžička, M. Lebesgue and Sobolev Spaces with Variable Exponents; Lecture Notes in Mathematics; Springer: Heidelberg, Germany, 2011; Volume 2017. [Google Scholar]
- Rădulescu, V.D. Isotropic and anisotropic double-phase problems: Old and new. Opusc. Math. 2019, 39, 259–279. [Google Scholar] [CrossRef]
- Zhikov, V.V. On variational problems and nonlinear elliptic equations with nonstandard growth conditions. J. Math. Sci. (N. Y.) 2011, 173, 463–570. [Google Scholar] [CrossRef]
- Rădulescu, V.D.; Repovš, D.D. Partial Differential Equations with Variable Exponents, Variational Methods and Qualitative Analysis; Chapman and Hall/CRC: London, UK, 2015. [Google Scholar]
- Antontsev, S.; Shmarev, S. Evolution PDEs with Nonstandard Growth Conditions. Existence, Uniqueness, Localization, Blow-Up; Atlantis Press: Paris, France, 2015. [Google Scholar]
- Baroni, P.; Colombo, M.; Mingione, G. Harnack inequalities for double phase functionals. Nonlinear Anal. 2015, 121, 206–222. [Google Scholar] [CrossRef]
- Baroni, P.; Colombo, M.; Mingione, G. Regularity for general functionals with double phase. Calc. Var. Partial Differ. Equs. 2018, 57, 62. [Google Scholar] [CrossRef] [Green Version]
- Marcellini, P. Regularity and existence of solutions of elliptic equations with p,q-growth conditions. J. Differ. Equas. 1991, 90, 1–30. [Google Scholar] [CrossRef] [Green Version]
- Marcellini, P. On the definition and the lower semicontinuity of certain quasiconvex integrals. In Annales de l’Institut Henri Poincaré C, Analyse non Linéaire; Elsevier Masson: Paris, France, 1986; Volume 3, pp. 391–409. [Google Scholar]
- Kováčik, O.; Rákosník, J. On spaces Lp(x) and Wk,p(x). Czechoslov. Math. J. 1991, 41, 592–618. [Google Scholar] [CrossRef]
- Meyers, N.G.; Serrin, J. H = W. Proc. Nat. Acad. Sci. USA 1964, 51, 1055–1056. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Edmunds, D.E.; Rákosník, J. Sobolev embeddings with variable exponent. Studia Math. 2000, 143, 267–293. [Google Scholar] [CrossRef]
- Barile, S.; Figueiredo, G.M. Existence of least energy positive, negative and nodal solutions for a class of p&q-problems with potentials vanishing at infinity. J. Math. Anal. Appl. 2015, 427, 1205–1233. [Google Scholar]
- Cencelj, M.; Rǎdulescu, V.D.; Repovš, D.D. Double phase problems with variable growth. Nonlinear Anal. 2018, 177, 270–287. [Google Scholar] [CrossRef] [Green Version]
- Andreianov, B.; Bendahmane, M.; Ouaro, S. Structural stability for variable exponent elliptic problems, II: The p(u)-Laplacian and coupled problems. Nonlinear Anal. 2010, 72, 4649–4660. [Google Scholar] [CrossRef] [Green Version]
- Chipot, M.; de Oliveira, H.B. Some results on the p(u)-Laplacian problem. Math. Ann. 2019, 375, 283–306. [Google Scholar] [CrossRef]
- Fan, X.L.; Zhao, D. On the spaces Lp(x)(Ω) and Wm,p(x)(Ω). J. Math. Anal. Appl. 2001, 263, 424–446. [Google Scholar] [CrossRef] [Green Version]
- Papageorgiou, N.S.; Rădulescu, V.D.; Repovš, D.D. Nonlinear Analysis—Theory and Methods; Springer Nature: Cham, Switzerland, 2019. [Google Scholar]
- Chipot, M. Elliptic Equations: An Introductory Course; Birkhäuser: Basel, Switzerland, 2009. [Google Scholar]
- Fan, X.L.; Zhang, Q.H. Existence of solutions for p(x)-Laplacian Dirichlet problem. Nonlinear Anal. 2003, 52, 1843–1852. [Google Scholar] [CrossRef]
- Ambrosetti, A.; Rabinowitz, P.H. Dual variational methods in critical point theory and applications. J. Funct. Anal. 1973, 14, 349. [Google Scholar] [CrossRef] [Green Version]
- Zhikov, V.V. On the technique for passing to the limit in nonlinear elliptic equations. Funct. Anal. Appl. 2009, 43, 96–112. [Google Scholar] [CrossRef]
- Gasiński, L.; Papageorgiou, N.S. Resonant anisotropic (p,q)-equations. Mathematics 2020, 8, 1332. [Google Scholar] [CrossRef]
- Papageorgiou, N.S.; Winkert, P. Positive solutions for singular anisotropic (p,q)-equations. J. Geom. Anal. 2021, 31, 11849–11877. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vetro, C. The Existence of Solutions for Local Dirichlet (r(u),s(u))-Problems. Mathematics 2022, 10, 237. https://doi.org/10.3390/math10020237
Vetro C. The Existence of Solutions for Local Dirichlet (r(u),s(u))-Problems. Mathematics. 2022; 10(2):237. https://doi.org/10.3390/math10020237
Chicago/Turabian StyleVetro, Calogero. 2022. "The Existence of Solutions for Local Dirichlet (r(u),s(u))-Problems" Mathematics 10, no. 2: 237. https://doi.org/10.3390/math10020237
APA StyleVetro, C. (2022). The Existence of Solutions for Local Dirichlet (r(u),s(u))-Problems. Mathematics, 10(2), 237. https://doi.org/10.3390/math10020237