Fixed Point Results for Cirić and Almost Contractions in Convex b-Metric Spaces
Abstract
:1. Introduction and Preliminaries
- if and only if ;
- ;
- .
- Convergent in , if there exists such that as .
- Cauchy in , if for each there exists such that for all .
- 1.
- iff ;
- 2.
- ;
- 3.
- , as
2. Main Results
- 1.
- If , then
- 2.
- If and , thenIf , thenIf , then
- 3.
- If and , then as in the above case, we obtain
- 4.
- If
- 1.
- If , thenClearly, as .
- 2.
- If , thenIf , then as in the above case, . If , then . Proceeding in a similar fashion, we can assume that , then we obtain,
- 1.
- If , thenLetting , we have .
- 2.
- If , thenIf , then as in the above case, . If , then. Proceeding in a similar fashion, we can assume that , then we obtain,Here, also as .
- 1.
- If , thenThat implies as .
- 2.
- If , thenIf , then as in above case, . If , then . Proceeding in a similar fashion, we can assume that , then we obtain,
- So, the sequence tends to zero as . Thus, all the hypotheses of Corollary 3 are satisfied, and hence, the map has only one fixed point in , which is .
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cirić, L.B. A generalization of Banach’s contraction principle. Proc. Am. Math. Soc. 1974, 45, 31–37. [Google Scholar] [CrossRef] [Green Version]
- Berinde, V. Approximating fixed points of weak contractions using the Picard iteration. Nonlinear Anal. Forum 2004, 9, 43–53. [Google Scholar]
- Berinde, V. General constructive fixed point theorems for Cirić-type almost contractions in metric spaces. Carpathian J. Math. 2008, 24, 10–19. [Google Scholar]
- Babu, G.V.R.; Sandhya, M.L.; Kameswari, M.V.R. A note on a fixed point theorem of Berinde on weak contractions. Carpathian J. Math. 2008, 24, 8–12. [Google Scholar]
- Bakhtin, I.A. The contraction mapping principle in quasi-metric spaces. Funct. Anal. 1989, 30, 26–37. [Google Scholar]
- Czerwik, S. Contraction mappings in b-metric spaces. Acta Math. Inform. Univ. Ostrav. 1993, 1, 5–11. [Google Scholar]
- Aydi, H.; Bota, M.F.; Karapinar, E.; Moradi, S. A common fixed point for weak contractions on b-metric spaces. Fixed Point Theory 2012, 13, 337–346. [Google Scholar]
- Karapinar, E.; Fulga, A. Fixed point on convex b-metric space via admissible Mappings. TWMS J. Pure Appl. Math. 2021, 12, 254–264. [Google Scholar]
- Karapinar, E.; Fulga, A.; Petrusel, A. On Istratescu type contractions in b-metric spaces. Mathematics 2020, 8, 388. [Google Scholar] [CrossRef] [Green Version]
- Aydi, H.; Karapinar, E.; Bota, M.F.; Mitrovic, S. A fixed point theorem for set-valued quasi-contractions in b-metric spaces. Fixed Point Theory Appl. 2012, 2012, 88. [Google Scholar] [CrossRef] [Green Version]
- Afshari, H.; Aydi, H.; Karapinar, E. On generalized α-ψ-Geraghty contractions on b-metric spaces. Georgian Math. J. 2020, 27, 9–21. [Google Scholar] [CrossRef] [Green Version]
- Karapinar, E.; Chifu, C. Results in wt-Distance over b-Metric Spaces. Mathematics 2020, 8, 220. [Google Scholar] [CrossRef] [Green Version]
- Czerwik, S.; Dlutek, K.; Singh, S.L. Round-off stability of iteration procedures for operators in b-metric spaces. J. Natur. Phys. Sci. 2001, 15, 1–8. [Google Scholar]
- Bota, M.; Molnar, A.; Varga, C. On Ekeland’s variational principle in b-metric spaces. Fixed Point Theory 2011, 12, 21–28. [Google Scholar]
- Aleksić, S.; Huang, H.; Mitrović, Z.; Radenović, S. Remarks on some fixed point results in b-metric space. J. Fixed Point Theory Appl. 2018, 20, 1–17. [Google Scholar] [CrossRef]
- Kirk, W.; Shahzad, N. Fixed Point Theory in Distance Spaces; Springer: Berlin, Germany, 2014. [Google Scholar] [CrossRef]
- Hussain, N.; Dorić, D.; Kadelburg, Z.; Radenović, S. Suzuki-type fixed point results in metric type spaces. Fixed Point Theory Appl. 2012, 2012, 126. [Google Scholar] [CrossRef] [Green Version]
- Faraji, H.; Savić, D.; Radenović, S. Fixed point theorems for Geraghty contraction type mappings in b-metric spaces and applications. Axioms 2019, 8, 34. [Google Scholar] [CrossRef] [Green Version]
- Kumar, A.; Kumar, S. (σ-ψ)s-Geraghty Contractions on b-Generalized Metric Spaces. Aut Aut Res. J. 2020, 11, 183–194. [Google Scholar]
- Takahashi, W. A convexity in metric space and nonexpansive mappings, I. Kodai Math. Semin. Rep. 1970, 22, 142–149. [Google Scholar] [CrossRef]
- Kumar, A.; Rathee, S. Some common fixed point and invariant approximation results for nonexpansive mappings in convex metric space. Fixed Point Theory Appl. 2014, 2014, 182. [Google Scholar] [CrossRef] [Green Version]
- Ding, X.P. Iteration processes for nonlinear mappings in convex metric spaces. J. Math. Anal. Appl. 1988, 132, 114–122. [Google Scholar] [CrossRef] [Green Version]
- Beg, I.; Shahzad, N.; Iqbal, M. Fixed point theorems and best approximation in convex metric space. Approx. Theory Appl. 1992, 8, 97–105. [Google Scholar] [CrossRef]
- Guay, M.D.; Singh, K.L.; Whitfield, J.H.M. Fixed point Theorems for nonexpansive mappings in convex metric spaces. Proc. Conf. Nonlinear Anal. LNPAM 1982, 80, 179–189. [Google Scholar]
- Beg, I.; Azam, A. Fixed point on starshaped subset of convex metric spaces. Indian J. Pure Appl. Math. 1987, 18, 594–596. [Google Scholar]
- Kumar, A.; Tas, A. Note on Common Fixed Point Theorems in Convex Metric Spaces. Axioms 2021, 10, 28. [Google Scholar] [CrossRef]
- Chen, L.; Li, C.; Kaczmarek, R.; Zhao, Y. Several Fixed point theorems in convex b-metric spaces and applications. Mathematics 2020, 8, 242. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rathee, S.; Kadyan, A.; Kumar, A.; Tas, K. Fixed Point Results for Cirić and Almost Contractions in Convex b-Metric Spaces. Mathematics 2022, 10, 466. https://doi.org/10.3390/math10030466
Rathee S, Kadyan A, Kumar A, Tas K. Fixed Point Results for Cirić and Almost Contractions in Convex b-Metric Spaces. Mathematics. 2022; 10(3):466. https://doi.org/10.3390/math10030466
Chicago/Turabian StyleRathee, Savita, Anshuka Kadyan, Anil Kumar, and Kenan Tas. 2022. "Fixed Point Results for Cirić and Almost Contractions in Convex b-Metric Spaces" Mathematics 10, no. 3: 466. https://doi.org/10.3390/math10030466
APA StyleRathee, S., Kadyan, A., Kumar, A., & Tas, K. (2022). Fixed Point Results for Cirić and Almost Contractions in Convex b-Metric Spaces. Mathematics, 10(3), 466. https://doi.org/10.3390/math10030466