A Non-Iterative Method for the Difference of Means on the Lie Group of Symmetric Positive-Definite Matrices
Abstract
:1. Introduction
2. Preliminaries
2.1. Exponential Map and Logarithmic Map
2.2. Frobenius Inner Product
2.3. Affine-Invariant Riemannian Metric
2.4. Log-Euclidean Riemannian Metric
3. Non-Iterative Method for the Difference of Means on
3.1. Mean Matrices Associated with Different Metrics
3.2. Non-Iterative Method for the Difference
3.3. Numerical Examples
4. Application to Point Cloud Denoising
4.1. Algorithm for Point Cloud Denoising
4.2. Numerical Examples
Algorithm 1 Algorithm for clustering signal and noise. |
Inputs: Point clouds , value of k and convergence threshold . Output: Two categories of point clouds . Main loop:
|
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Agarwal, M.; Gupta, M.; Mann, V.; Sachindran, N.; Anerousis, N.; Mummert, L. Problem determination in enterprise middleware systems using change point correlation of time series data. In Proceedings of the 2006 IEEE/IFIP Network Operations and Management Symposium NOMS 2006, Vancouver, BC, Canada, 3–7 April 2006; pp. 471–482. [Google Scholar]
- Cheng, Y.; Wang, X.; Morelande, M.; Moran, B. Information geometry of target tracking sensor networks. Inf. Fusion 2013, 14, 311–326. [Google Scholar] [CrossRef]
- Li, X.; Cheng, Y.; Wang, H.; Qin, Y. Information Geometry Method of Radar Signal Processing; Science Press: Beijing, China, 2014. [Google Scholar]
- Merckel, L.; Nishida, T. Change-point detection on the lie group SE(3). In Proceedings of the International Conference on Computer Vision, Imaging and Computer Graphics, Angers, France, 17–21 May 2010; Springer: Berlin, Germany, 2010; pp. 230–245. [Google Scholar]
- Arnaudon, M.; Barbaresco, F.; Yang, L. Riemannian medians and means with applications to Radar signal processing. IEEE J. Sel. Top. Signal Process. 2013, 7, 595–604. [Google Scholar] [CrossRef]
- Barbaresco, F. Interactions between Symmetric Cone and Information Geometries: Bruhat-Tits and Siegel Spaces Models for High Resolution Autoregressive Doppler Imagery, Emerging Trends in Visual Computing; Springer: Berlin, Germany, 2008. [Google Scholar]
- Duan, X.; Zhao, X.; Shi, C. An extended Hamiltonian algorithm for the general linear matrix equation. J. Math. Anal. Appl. 2016, 441, 1–10. [Google Scholar] [CrossRef]
- Luo, Z.; Sun, H. Extended Hamiltonian algorithm for the solution of discrete algebraic Lyapunov equations. Appl. Math. Comput. 2014, 234, 245–252. [Google Scholar] [CrossRef]
- Chen, W.; Chena, S. Application of the non-local log-Euclidean mean to Radar target detection in nonhomogeneous sea clutter. IEEE Access 2019, 99, 36043–36054. [Google Scholar] [CrossRef]
- Wang, B.; Hu, Y.; Gao, J.; Ali, M.; Tien, D.; Sun, Y.; Yin, B. Low rank representation on SPD matriceswith log-Euclidean metric. Pattern Recognit. 2016, 76, 623–634. [Google Scholar] [CrossRef]
- Liu, Q.; Shao, G.; Wang, Y.; Gao, J.; Leung, H. Log-Euclidean metrics for contrast preserving decolorization. IEEE Trans. Image Process. 2017, 26, 5772–5783. [Google Scholar] [CrossRef]
- Moakher, M. A differential geometric approach to the geometric mean of symmetric positive-definite matrices. SIAM J. Matrix Anal. Appl. 2005, 26, 735–747. [Google Scholar] [CrossRef]
- Moakher, M. On the averaging of symmetric positive-definite tensors. J. Elast. 2006, 82, 273–296. [Google Scholar] [CrossRef]
- Batchelor, P.G.; Moakher, M.; Atkinson, D.; Calamante, F.; Connelly, A. A rigorous framework for diffusion tensor calculus. Magn. Reson. Med. 2005, 53, 221–225. [Google Scholar] [CrossRef] [PubMed]
- Arsigny, V.; Fillard, P.; Pennec, X.; Ayache, N. Log-Euclidean metrics for fast and simple calculus on diffusion tensors. Magn. Reson. Med. 2006, 56, 411–421. [Google Scholar] [CrossRef]
- Curtis, M.L. Matrix Groups; Springer: Berlin, Germany, 1979. [Google Scholar]
- Jost, J. Riemannian Geometry and Geometric Analysis, 3rd ed.; Springer: Berlin, Germany, 2002. [Google Scholar]
- Jorgen, W. Matrix diferential calculus with applications in statistics and econometrics. De Economist 2000, 148, 130–131. [Google Scholar]
- Fiori, S. Learning the Fréchet mean over the manifold of symmetric positive-definite matrices. Cogn. Comput. 2009, 1, 279–291. [Google Scholar] [CrossRef] [Green Version]
- Duan, X.; Sun, H.; Peng, L. Application of gradient descent algorithms based on geodesic distances. Sci. China Inf. Sci. 2020, 63, 152201:1–152201:11. [Google Scholar] [CrossRef] [Green Version]
- Jain, A.K. Data clustering. 50 years beyond K-means. Pattern Recognit. Lett. 2010, 31, 651–666. [Google Scholar] [CrossRef]
- Zhu, Y.; Ting, K.M. Carman, M.J. Density-ratio based clustering for discovering clusters with varying densities. Pattern Recognit. 2016, 60, 983–997. [Google Scholar] [CrossRef]
- Rodriguez, A.; Laio, A. Clustering by fast search and find of density peaks. Science 2014, 334, 1492–1496. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, H.; Song, Y.; Luo, Y.; Sun, F. A clustering algorithm based on statistical manifold. Trans. Beijing Inst. Technol. 2021, 41, 226–230. [Google Scholar]
- Amari, S. Information Geometry and Its Applications; Springer: Tokyo, Japan, 2016. [Google Scholar]
Metric | SNR 4148:1000 | SNR 4148:2000 | ||||
---|---|---|---|---|---|---|
Precision | Recall | Accuracy | Precision | Recall | Accuracy | |
log-Euclidean metric | 91.53% | 100% | 92.54% | 85.35% | 99.45% | 88.11% |
Euclidean metric | 85.41% | 99.88% | 86.15% | 74.40% | 93.66% | 73.98% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duan, X.; Ji, X.; Sun, H.; Guo, H. A Non-Iterative Method for the Difference of Means on the Lie Group of Symmetric Positive-Definite Matrices. Mathematics 2022, 10, 255. https://doi.org/10.3390/math10020255
Duan X, Ji X, Sun H, Guo H. A Non-Iterative Method for the Difference of Means on the Lie Group of Symmetric Positive-Definite Matrices. Mathematics. 2022; 10(2):255. https://doi.org/10.3390/math10020255
Chicago/Turabian StyleDuan, Xiaomin, Xueting Ji, Huafei Sun, and Hao Guo. 2022. "A Non-Iterative Method for the Difference of Means on the Lie Group of Symmetric Positive-Definite Matrices" Mathematics 10, no. 2: 255. https://doi.org/10.3390/math10020255
APA StyleDuan, X., Ji, X., Sun, H., & Guo, H. (2022). A Non-Iterative Method for the Difference of Means on the Lie Group of Symmetric Positive-Definite Matrices. Mathematics, 10(2), 255. https://doi.org/10.3390/math10020255