Calculating Complete Lists of Belyi Pairs
Abstract
:1. Introduction
- implies and ;
- is impossible;
- implies and is equivalent to with , .
2. Belyi Pairs of Genera 0 and 1
2.1. On Plane Trees
2.2. Unicellular Toric Dessins
2.2.1. Some Theory
2.2.2. Centrally Symmetric Dessins
2.2.3. The Bicolored Dessin
2.2.4. General Dessins
2.2.5. Tables
3. Belyi Pairs of Genus 2
3.1. Overview
3.2. Belyi Pairs of Degree 5
3.3. Clean Belyi Pairs of Degree 8
3.3.1. Passport
3.3.2. Divisors of Finite Order
3.3.3. Easy Cases
3.3.4. Number of Realizations
3.3.5. Some Qualitative Results
- ;
- ;
- in the difficult cases .
3.3.6. Calculations
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Tutte, W.T. What is a map? In New Directions in the Theory of Graphs; Harary, F., Ed.; Academic Press: New York, NY, USA, 1973. [Google Scholar]
- Harary, F.; Palmer, E.M. Graphical Enumeration; Academic Press: Cambridge, MA, USA, 1973. [Google Scholar]
- Bose, S.; Gundry, J.; He, Y.-H. Gauge theories and dessins d’enfants: Beyond the torus. J. High Energy Phys. 2015, 2015, 135. [Google Scholar] [CrossRef]
- Asselmeyer-Maluga, T. Quantum computing and the brain: Quantum nets, dessins d’enfants and neural networks. In Proceedings of the Quantum Technology International Conference 2018, Paris, France, 5–7 September 2018; Volume 198, p. 00014. [Google Scholar]
- Artin, M.; Jackson, A.; Mumford, D.; Tate, J. Alexandre Grothendieck 1928–2014, Part 1. Not. AMS 2016, 63, 242–255. [Google Scholar]
- Belyi, G.V. Galois extensions of a maximal cyclotomic fields. Math. USSR Izv. 1980, 14, 247–256. [Google Scholar] [CrossRef]
- Schneps, L. Dessins d’enfants on the Riemann sphere. In The Grothendieck Theory of Dessins d’Enfants; Schneps, L., Ed.; London Mathematical Society Lecture Note Series; Cambridge University Press: Cambridge, UK, 1994; Volume 200, pp. 47–78. [Google Scholar]
- Musty, M.; Schiavone, S.; Sijsling, J.; Voight, J. A database of Belyi maps. In The Open Book Series 2, Thirteenth Algorithmic Number Theory Symposium; Mathematical Sciences Publishers: Berkeley, CA, USA, 2019. [Google Scholar]
- Grothendieck, A. Esquisse d’un Programme, Unpublished manuscript (1984). In Geometric Galois Actions; Lochak, P.; Schneps, L., Translators; London Mathematical Society Lecture Note Series; Cambridge University Press: Cambridge, UK, 1997; Volume 242, pp. 5–48. [Google Scholar]
- Shabat, G.B.; Voevodsky, V.A. Drawing Curves Over Number Fields. In The Grothendieck Festschrift: Progress in Mathematics; Cartier, P., Illusie, L., Katz, N.M., Laumon, G., Manin, Y.I., Ribet, K.A., Eds.; Birkhäuser: Boston, MA, USA, 1990; Volume 88. [Google Scholar]
- Girondo, E.; Gonzalez-Diez, G. Introduction to Compact Riemann Surfaces and Dessins d’Enfants; London Mathematical Society Student Texts; Cambridge University Press: Cambridge, UK, 2012. [Google Scholar]
- Lando, S.; Zvonkin, A. Graphs on Surfaces and Their Applications; Springer: Berlin/Heidelberg, Germany, 2004. [Google Scholar]
- Sijsling, J.; Voight, J. On computing Belyi maps. Publications Mathématiques de Besançon Algèbre et Théorie des Nombres 2014, 1, 73–131. [Google Scholar] [CrossRef] [Green Version]
- Shabat, G. Calculating and drawing Belyi pairs. J. Math. Sci. 2017, 226, 667–693. [Google Scholar] [CrossRef]
- Adrianov, N.M.; Amburg, N.Y.; Dremov, V.A.; Kochetkov, Y.Y.; Kreines, E.M.; Levitskaya, Y.A.; Nasretdinova, V.F.; Shabat, G.B. Catalog of dessins d’enfants with no more than 4 edges. J. Math. Sci. 2009, 158, 22–80. [Google Scholar] [CrossRef] [Green Version]
- Shabat, G.B.; Zvonkin, A.K. Plane trees and algebraic numbers. In Contemporary Mathematics, Proceedings of the “Jerusalem Combinatorics’ 93”, Jerusalem, Israel, 9–17 May 1993; AMS: Jerusalem, Israel, 1994; Volume 176, pp. 233–275. [Google Scholar]
- Bétréma, J.; Péré, D.; Zvonkin, A.K. Plane Trees and Their Shabat Polynomials; Rapport Interne du LaBRI: Bordeaux, France, 1992. [Google Scholar]
- Kochetkov, Y.Y. Plane trees with nine edges. Catalog. J. Math. Sci. 2009, 158, 114–140. [Google Scholar] [CrossRef]
- Kochetkov, Y.Y. Short catalog of plane ten-edge trees. arXiv 2014, arXiv:1412.2472v1. [Google Scholar]
- Adrianov, N.M.; Kochetkov, Y.Y.; Suvorov, A.D.; Shabat, G.B. Mathieu groups and plane trees. Fundam. Prikl. Mat. 1995, 1, 377–384. [Google Scholar]
- Shabat, G. Unicellular four-edged toric dessins. J. Math. Sci. 2015, 209, 309–318. [Google Scholar] [CrossRef]
- Goupil, A.; Schaeffer, G. Factoring N-cycles and counting maps of given genus. Eur. J. Comb. 1998, 19, 819–834. [Google Scholar] [CrossRef] [Green Version]
- Dremov, V.A. Is 1 − β a square? Unpublished. 2000. [Google Scholar]
- Igusa, J. On Siegel modular forms of genus two. Am. J. Math. 1962, 84, 175–200. [Google Scholar] [CrossRef]
- Birch, B. Non-congruence subgroups, covers and drawings. In The Grothendieck Theory of Dessins D’Enfants; London Mathematical Society Lecture Note Series; Cambridge University Press: Cambridge, UK, 1994; Volume 200, pp. 25–46. [Google Scholar]
- Fuertes, Y.; Mednykh, A. Genus 2 semi-regular coverings with lifting symmetries. Glasg. Math. J. 2008, 50, 379–394. [Google Scholar]
- Adrianov, N.M.; Shabat, G.B. Belyi functions of dessins d’enfants of genus 2 with 4 edges. Russ. Math. Surv. 2005, 60, 1237–1239. [Google Scholar] [CrossRef]
- Harer, J.; Zagier, D. The Euler characteristic of the moduli space of curves. Invent. Math. 1986, 85, 457–485. [Google Scholar] [CrossRef] [Green Version]
- Abel, N.-H. Sur l’intégration de la formule différentielle , R et ρ étant des fonctions entières. J. Reine Angew. Math. 1826, 1, 185–221. [Google Scholar]
- Shabat, G. Belyi pairs in the critical filtrations of Hurwitz spaces. In Teichmüller Theory and Grothendieck-Teichmüller Theory; Ji, L., Papadopoulos, A., Su, W., Eds.; Advanced Lectures in Mathematics (ALM); International Press: Somerville, MA, USA, 2022; pp. 320–341. [Google Scholar]
Dessin | “Bad” Primes | j-Invariant of the Curve |
---|---|---|
3 | ||
none | ||
none | ||
3 | ||
The real root of , see below | ||
One of the non-real roots of , see below | ||
One of the non-real roots of , see below | ||
3 | ||
One of the roots of , see below | ||
One of the roots of , see below |
Galois Orbit | Norm of j-Invariants |
---|---|
, , | |
Pasting | Gaussian Word | Aut |
---|---|---|
A | cyclic of order 8 | |
B | cyclic of order 2 | |
trivial | ||
trivial |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adrianov, N.M.; Shabat, G.B. Calculating Complete Lists of Belyi Pairs. Mathematics 2022, 10, 258. https://doi.org/10.3390/math10020258
Adrianov NM, Shabat GB. Calculating Complete Lists of Belyi Pairs. Mathematics. 2022; 10(2):258. https://doi.org/10.3390/math10020258
Chicago/Turabian StyleAdrianov, Nikolai M., and George B. Shabat. 2022. "Calculating Complete Lists of Belyi Pairs" Mathematics 10, no. 2: 258. https://doi.org/10.3390/math10020258
APA StyleAdrianov, N. M., & Shabat, G. B. (2022). Calculating Complete Lists of Belyi Pairs. Mathematics, 10(2), 258. https://doi.org/10.3390/math10020258