Finite Element Method-Based Elastic Analysis of Multibody Systems: A Review
Abstract
:1. Introduction
2. FEA of Elastic MBS
3. Kinematics
4. Fundamental Notions in Dynamics of FEA of MBS
4.1. Kinetic Energy
4.2. Potential Energy
4.3. Work
4.4. Lagrangian
4.5. Momentum
4.6. Hamiltonian
4.7. Energy of Accelerations
5. Analytical Method in FEA of MBS
5.1. Lagrange’s Equations
5.2. Gibbs–Appell Formalism
- containing the quadratic terms in accelerations:
- containing the linear terms in accelerations:
- The terms without any term with accelerations that play no role in obtaining the equations.
5.3. Hamilton’s Method
5.4. Maggi’s Equations
6. Conclusions and Discussion
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
Notations
position vector of point M’; | |
position vectors of point M; | |
displacement vector; | |
position vector of origin O (of the mobile reference frame) | |
index G | vector with components express in the global reference frame; |
index L | vector with components express in the local reference frame; |
rotation matrix; | |
shape functions matrix; | |
velocity of point M’; | |
acceleration of point M’; | |
nodal displacement vector; | |
Ec | kinetic energy; |
Ep | potential energy; |
L | Lagrangian; |
H | Hamiltonian; |
stress vector; | |
strain vector; | |
dot product between the vectors and ; | |
conjugated moment; | |
Ea | energy of acceleration; |
work of the concentrated forces; | |
work of the volume forces. |
References
- Gans, F.R. Engineering Dynamics: From the Lagrangian to Simulation; Springer: New York, NY, USA, 2013; ISBN 978-1-4614-3929-5. [Google Scholar]
- Shi, Z.; Meacci, M.; Meli, E.; Wang, K.Y.; Rindi, A. Validation of a Finite Element Multibody System Model for Vehicle-Slab Track Application. In Advances in Dynamics of Vehicles on Roads and Tracks, Iavsd 2019, Proceedings of the 26th Symposium of the International Association of Vehicle System Dynamics (IAVSD), Gothenburg, Sweden, 12–16 August 2019; Proceedings Paper in Book Series: Lecture Notes in Mechanical Engineering; Springer: Cham, Switzerland, 2020; pp. 407–414. [Google Scholar] [CrossRef]
- Tokarczyk, J. Migration of Computational Models in Virtual Prototyping of Complex Mechanical Systems. In Book Group Author IAENG, Proceedings of the World Congress on Engineering and Computer Science, WCECS 2012, San Francisco, CA, USA, 24–26 October 2012; Proceedings Paper, Book Series: Lecture Notes in Engineering and Computer Science; Newswood Limited: Hong Kong, China, 2012; Volume II, pp. 1334–1337. [Google Scholar]
- Marce-Nogue, J.; Klodowski, A.; Sanchez, M.; Gil, L. Coupling finite element analysis and multibody system dynamics for biological research. Palaeontol. Electron. 2015, 18, 5T. [Google Scholar]
- Miao, B.R.; Zhang, W.H.; Huang, G.H.; Wu, S.C.; Zhao, Y.X. Research of High Speed Train Carbody Structure Vibration Behaviors and Structure Fatigue Strength Characteristic Technology. In Advanced Materials Research; Advanced in Product Development and Reliability III 2012; Proceedings Paper; Trans Tech Publications Ltd.: Freienbach, Switzerland, 2012; Volume 544, pp. 256–261. [Google Scholar] [CrossRef]
- Ding, J.G.; Dai, Y.W.; Qiao, Z.; Huang, H.J.; Zhuang, W. Analysis of the Response of a Frame Structure during an Earthquake Using the Transfer Matrix Method of a Multibody System. J. Eng. Mech. 2015, 141, 04015020. [Google Scholar] [CrossRef]
- Wallrapp, O.; Sachau, D. Space Flight Dynamic Simulations using Finite Element Results in Multibody System Codes. In Advances in Computational Mechanics, Proceedings of the 2nd International Conference on Computational Structures Technology, CST’ 94, Athens, Greece, 30 August–1 September 1994; Proceedings Paper; Greece; 1994; pp. 149–158. Available online: https://elib.dlr.de/28194/ (accessed on 10 October 2021).
- Zhang, J.H.; Jiang, S.S. Definition of Boundary Conditions and Dynamic Analysis of Rocket Sled and Turntable. In Applied Mechanics and Materials, Proceedings of the 1st International Conference on Mechanical Engineering, Phuket, Thailand, 2 March 2011; Proceedings Paper; Trans Tech Publications Ltd.: Freienbach, Switzerland, 2011; Volume 52–54, pp. 261–268. [Google Scholar] [CrossRef]
- Scutaru, M.L.; Chircan, E.; Marin, M.; Grif, H.S. Liaison Forces Eliminating and Assembling of the Motion Equation in the Study of Multibody System with Elastic Elements. In Procedia Manufacturing, Proceedings of the 13th International Conference Interdisciplinarity in Engineering (Inter-Eng. 2019), Targu Mures, Romania, 3–4 October 2019; Proceedings Paper; Elservier B.V.: Amsterdam, The Netherlands, 2020; Volume 46, pp. 78–86. [Google Scholar] [CrossRef]
- Shabana, A.A. Dynamics of Multibody Systems, 4th ed.; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
- Shabana, A.A.; Bauchau, O.A.; Hulbert, G.M. Integration of Large Deformation Finite Element and Multibody System Algorithms. J. Comput. Nonlinear Dyn. 2007, 2, 351–359. [Google Scholar] [CrossRef]
- Rui, X.; Rong, B.; Wang, G. New Method for Dynamics Modeling and Simulation of Flexible Multibody System. In Proceedings of the Third International Conference on Mechanical Engineering and Mechanics, Beijing, China, 21–23 October 2009; Volumes 1 and 2, pp. 17–23. [Google Scholar]
- Witteveen, W.; Stefan, P.; Pichler, F. On the Projection of a Flexible Bodies Modal Coordinates onto Another Finite Element Model with Local Modifications. J. Comput. Nonlinear Dyn. 2019, 14, 074501. [Google Scholar] [CrossRef]
- Liang, Y.T.; McPhee, J. Symbolic integration of multibody system dynamics with the finite element method. Multibody Syst. Dyn. 2018, 43, 387–405. [Google Scholar] [CrossRef] [Green Version]
- Wallrapp, O. Flexible bodies in multibody system codes. Veh. Syst. Dyn. 1998, 30, 237–256. [Google Scholar] [CrossRef]
- Wallrapp, O. Standardization of Flexible Body Modeling in Multibody System Codes, Part I: Definition of Standard Input Data. Mech. Struct. Mach. 1994, 22, 283–304. [Google Scholar] [CrossRef]
- Patel, M.; Orzechowski, G.; Tian, Q.; Shabana, A.A. A new multibody system approach for tire modeling using ANCF finite elements. Proc. Inst. Mech. Engineers. Part K-J. Multibody Dyn. 2016, 230, 69–84. [Google Scholar] [CrossRef]
- Zhang, J.H.; Jiang, S.S. Rigid-Flexible Coupling Model and Dynamic Analysis of Rocket Sled. International Conference on Sustainable Construction Materials and Computer Engineering (ICSCMCE 2011). In Advanced Materials Research, Proceedings of the Sustainable Construction Materials and Computer Engineering, Kunming, China, 24–25 September 2011; Proceedings Paper; Trans Tech Publications Ltd.: Freienbach, Switzerland, 2012; Volume 346, pp. 447–454. [Google Scholar] [CrossRef]
- Lu, H.J.; Rui, X.T.; Ding, Y.Y.; Chang, Y.; Chen, Y.H.; Ding, J.G.; Zhang, X.P. A hybrid numerical method for vibration analysis of linear multibody systems with flexible components. Appl. Math. Model. 2022, 101, 748–771. [Google Scholar] [CrossRef]
- You, T.W.; Gong, D.; Zhou, J.S.; Sun, Y.; Chen, J.X. Frequency response function-based model updating of flexible vehicle body using experiment modal parameter. Veh. Syst. Dyn. 2021. [Google Scholar] [CrossRef]
- Costa, J.N.; Antunes, P.; Magalhaes, H.; Pombo, J.; Ambrosio, J. A finite element methodology to model flexible tracks with arbitrary geometry for railway dynamics applications. Comput. Struct. 2021, 254, 106519. [Google Scholar] [CrossRef]
- Krauklis, A.E.; Gagani, A.I.; Echtermeyer, A.T. Prediction of Orthotropic Hygroscopic Swelling of Fiber-Reinforced Composites from Isotropic Swelling of Matrix Polymer. J. Compos. Sci. 2019, 3, 10. [Google Scholar] [CrossRef] [Green Version]
- Krauklis, A.E.; Gagani, A.I.; Echtermeyer, A.T. Near-Infrared Spectroscopic Method for Monitoring Water Content in Epoxy Resins and Fiber-Reinforced Composites. Materials 2018, 11, 586. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gagani, A.I.; Monsås, A.B.; Krauklis, A.E.; Echtermeyer, A.T. The effect of temperature and water immersion on the interlaminar shear fatigue of glass fiber epoxy composites using the I-beam method. Compos. Sci. Technol. 2019, 181, 107703. [Google Scholar] [CrossRef]
- Rocha, A.V.M.; Akhavan-Safar, A.; Carbas, R.; Marques, E.A.S.; Goyal, R.; El-zein, M.; da Silva, L.F.M. Numerical analysis of mixed-mode fatigue crack growth of adhesive joints using CZM. Theor. Appl. Fract. Mechanics. 2020, 106, 102493. [Google Scholar] [CrossRef]
- Rocha, A.V.M.; Akhavan-Safar, A.; Carbas, R.; Marques, E.A.S.; Goyal, R.; El-zein, M.; da Silva, L.F.M. Fatigue crack growth analysis of different adhesive systems: Effects of mode mixity and load level. Fatigue Fract. Eng. Mater. Struct. 2020, 43, 330–341. [Google Scholar] [CrossRef]
- Cammarata, A. Global modes for the reduction of flexible multibody systems Methodology and complexity. Multibody Syst. Dyn. 2021, 53, 59–83. [Google Scholar] [CrossRef]
- Manca, A.G.; Pappalardo, C.M. Topology Optimization Procedure of Aircraft Mechanical Components Based on Computer-Aided Design, Multibody Dynamics, and Finite Element Analysis. In Advances in Design, Simulation and Manufacturing III: Mechanical and Chemical Engineering, Proceedings of the 3rd International Conference on Design, Simulation, Manufacturing-(DSMIE), Kharkiv, Ukraine, 9–12 June 2020; Book Series: Lecture Notes in Mechanical Engineering; Springer: Cham, Swizerland, 2020; Volume 2, pp. 159–168. [Google Scholar] [CrossRef]
- Lu, H.J.; Rui, X.T.; Zhang, X.P. A computationally efficient modeling method for the vibration analyses of two-dimensional system structures using reduce transfer matrix method for multibody system. J. Sound Vib. 2021, 502, 116096. [Google Scholar] [CrossRef]
- Liu, X.; Sun, C.L.; Banerjee, J.R.; Dan, H.C.; Chang, L. An exact dynamic stiffness method for multibody systems consisting of beams and rigid-bodies. Mech. Syst. Signal Processing 2021, 150, 107264. [Google Scholar] [CrossRef]
- Raoofian, A.; Taghvaeipour, A.; Kamali, E.A. Elastodynamic analysis of multibody systems and parametric mass matrix derivation. Mech. Based Des. Struct. Mach. 2020; early access. [Google Scholar] [CrossRef]
- Jeong, S.; Yoo, H.H. Generalized classical Ritz method for modeling geometrically nonlinear flexible multibody systems having a general topology. Int. J. Mech. Sci. 2020, 181, 105687. [Google Scholar] [CrossRef]
- Wang, G.; Qi, Z.H.; Xu, J.S. A high-precision co-rotational formulation of 3D beam elements for dynamic analysis of flexible multibody systems. Comput. Methods Appl. Mech. Eng. 2020, 360, 112701. [Google Scholar] [CrossRef]
- Hou, Y.S.; Liu, C.; Hu, H.Y. Component-level proper orthogonal decomposition for flexible multibody systems. Comput. Methods Appl. Mech. Eng. 2020, 361, 112690. [Google Scholar] [CrossRef]
- Bagci, C. Elastodynamic Response of Mechanical Systems using Matrix Exponential Mode Uncoupling and Incremental Forcing Techniques with Finite Element Method. In Proceedings of the Sixth Word Congress on Theory of Machines and Mechanisms, India, Delhi, 15–20 December 1983; p. 472. [Google Scholar]
- Bahgat, B.M.; Willmert, K.D. Finite Element Vibrational Analysis of Planar Mechanisms. Mech. Mach. Theory 1976, 11, 47. [Google Scholar] [CrossRef]
- Cleghorn, W.L.; Fenton, E.G.; Tabarrok, K.B. Finite Element Analysis of High-Speed Flexible Mechanisms. Mech. Mach. Theory 1981, 16, 407. [Google Scholar] [CrossRef]
- Vlase, S.; Dănăşel, C.; Scutaru, M.L.; Mihălcică, M. Finite Element Analysis of a Two-Dimensional Linear Elastic Systems with a Plane “rigid Motion. Rom. Journ. Phys. 2014, 59, 476–487. [Google Scholar]
- Deü, J.-F.; Galucio, A.C.; Ohayon, R. Dynamic responses of flexible-link mechanisms with passive/active damping treatment. Comput. Struct. 2008, 86, 258–265. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Erdman, A.G. Dynamic responses of flexible linkage mechanisms with viscoelastic constrained layer damping treatment. Comput. Struct. 2001, 79, 1265–1274. [Google Scholar] [CrossRef]
- Shi, Y.M.; Li, Z.F.; Hua, H.X.; Fu, Z.F.; Liu, T.X. The Modeling and Vibration Control of Beams with Active Constrained Layer Damping. J. Sound Vib. 2001, 245, 785–800. [Google Scholar] [CrossRef]
- Hou, W.; Zhang, X. Dynamic analysis of flexible linkage mechanisms under uniform temperature change. J. Sound Vib. 2009, 319, 570–592. [Google Scholar] [CrossRef]
- Neto, M.A.; Ambrósio, J.A.C.; Leal, R.P. Composite materials in flexible multibody systems. Comput. Methods Appl. Mech. Eng. 2006, 195, 6860–6873. [Google Scholar] [CrossRef] [Green Version]
- Piras, G.; Cleghorn, W.L.; Mills, J.K. Dynamic finite-element analysis of a planar high-speed, high-precision parallel manipulator with flexible links. Mech. Mach. Theory 2005, 40, 849–862. [Google Scholar] [CrossRef]
- Gibbs, J.W. On the fundamental formulae of dynamics. Am. J. Math. 1879, 2, 49–64. [Google Scholar] [CrossRef]
- Appell, P. Sur une forme générale des equations de la dynamique. J. Reine Angew. Math. 1900, 121, 310–319. [Google Scholar]
- Mirtaheri, S.M.; Zohoor, H. The Explicit Gibbs-Appell Equations of Motion for Rigid-Body Constrained Mechanical System. In Proceedings of the RSI International Conference on Robotics and Mechatronics ICRoM, Tehran, Iran, 23–25 October 2018; pp. 304–309. [Google Scholar]
- Korayem, M.H.; Dehkordi, S.F. Motion equations of cooperative multi flexible mobile manipulator via recursive Gibbs-Appell formulation. Appl. Math. Model. 2019, 65, 443–463. [Google Scholar] [CrossRef]
- Shafei, A.M.; Shafei, H.R. A systematic method for the hybrid dynamic modeling of open kinematic chains confined in a closed environment. Multibody Syst. Dyn. 2017, 38, 21–42. [Google Scholar] [CrossRef]
- Korayem, M.H.; Dehkordi, S.F. Derivation of dynamic equation of viscoelastic manipulator with revolute-prismatic joint using recursive Gibbs-Appell formulation. Nonlinear Dyn. 2017, 89, 2041–2064. [Google Scholar] [CrossRef]
- Marin, M.; Ellahi, R.; Chirilă, A. On solutions of Saint-Venant’s problem for elastic dipolar bodies with voids. Carpathian J. Math. 2017, 33, 219–232. [Google Scholar] [CrossRef]
- Cheng, Y.D.; Wang, Z.X. A new discontinuous Galerkin finite element method for directly solving the Hamilton-Jacobi equations. J. Comput. Phys. 2014, 268, 134–153. [Google Scholar] [CrossRef] [Green Version]
- Zheng, F.; Qiu, J.X. Directly solving the Hamilton-Jacobi equations by Hermite WENO Schemes. J. Comput. Phys. 2016, 307, 423–445. [Google Scholar] [CrossRef]
- Anguelov, R.; Lubuma, J.M.S.; Minani, F. A monotone scheme for Hamilton-Jacobi equations via the nonstandard finite difference method. Math. Methods Appl. Sci. 2010, 33, 41–48. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.L.; Pollack, M.; Saran, H. Alternating Evolution Schemes for Hamilton-Jacobi Equations. SIAM J. Sci. Comput. 2013, 35, A122–A149. [Google Scholar] [CrossRef] [Green Version]
- Rong, B.; Rui, X.T.; Tao, L.; Wang, G.P. Theoretical modeling and numerical solution methods for flexible multibody system dynamics. Nonlinear Dyn. 2019, 98, 1519–1553. [Google Scholar] [CrossRef]
- Vlase, S.; Teodorescu, P.P. Elasto-Dynamics of a Solid with a General “RIGID” Motion using FEM Model. Part I. Theoretical Approach. Rom. J. Phys. 2013, 58, 872–881. [Google Scholar]
- Vlase, S.; Negrean, I.; Marin, M.; Nastac, S. Kane’s Method-Based Simulation and Modeling Robots with Elastic Elements, Using Finite Element Method. Mathematics 2020, 8, 805. [Google Scholar] [CrossRef]
- Mitu, G.L.; Chircan, E.; Scutaru, M.L.; Vlase, S. Kane’s Formalism Used to the Vibration Analysis of a Wind Water Pump. Symmetry 2020, 12, 1030. [Google Scholar] [CrossRef]
- Ursu-Fisher, N. Elements of Analytical Mechanics; House of Science Book Press: Cluj-Napoca, Romania, 2015. [Google Scholar]
- Vlase, S.; Negrean, I.; Marin, M.; Scutaru, M.L. Energy of Accelerations Used to Obtain the Motion Equations of a Three- Dimensional Finite Element. Symmetry 2020, 12, 321. [Google Scholar] [CrossRef] [Green Version]
- Negrean, I.; Kacso, K.; Schonstein, C.; Duca, A. Mechanics; UTPESS: Cluj Napoca, Romania, 2012. [Google Scholar]
- Vlase, S.; Marin, M.; Scutaru, M.L. Maggi’s equations used in the finite element analysis of the multibody systems with elastic elements. Mathematics 2020, 8, 399. [Google Scholar] [CrossRef] [Green Version]
- de Jalón, J.G.; Callejo, A.; Hidalgo, A. Efficient Solution of Maggi’s Equations. J. Comput. Nonlinear Dyn. 2012, 7, 021003. [Google Scholar] [CrossRef]
- Desloge, E. The Gibbs–Appell equations of motion. Am. J. Phys. Am. Assoc. Phys. Teach. 1988, 56, 841–847. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vlase, S.; Marin, M.; Iuliu, N. Finite Element Method-Based Elastic Analysis of Multibody Systems: A Review. Mathematics 2022, 10, 257. https://doi.org/10.3390/math10020257
Vlase S, Marin M, Iuliu N. Finite Element Method-Based Elastic Analysis of Multibody Systems: A Review. Mathematics. 2022; 10(2):257. https://doi.org/10.3390/math10020257
Chicago/Turabian StyleVlase, Sorin, Marin Marin, and Negrean Iuliu. 2022. "Finite Element Method-Based Elastic Analysis of Multibody Systems: A Review" Mathematics 10, no. 2: 257. https://doi.org/10.3390/math10020257
APA StyleVlase, S., Marin, M., & Iuliu, N. (2022). Finite Element Method-Based Elastic Analysis of Multibody Systems: A Review. Mathematics, 10(2), 257. https://doi.org/10.3390/math10020257