Event-Triggered Impulsive Optimal Control for Continuous-Time Dynamic Systems with Input Time-Delay
Abstract
:1. Introduction
2. Preliminaries
3. Main Results
3.1. Stability Analysis
3.2. Exclusion of the Zeno-Behavior
4. Numerical Simulations
Algorithm 1: Event-Triggered Impulsive Optimal Control Strategy |
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kaserer, D.; Gattringer, H.; Mueller, A. Time optimal motion planning and admittance control for cooperative grasping. IEEE Robot. Autom. Lett. 2020, 99, 2216–2223. [Google Scholar] [CrossRef]
- Chen, B.; Li, X.; Evangelou, S.A.; Lot, R. Joint propulsion and cooling energy management of hybrid electric vehicles by optimal control. IEEE Trans. Veh. Technol. 2020, 5, 4894–4906. [Google Scholar] [CrossRef]
- Hu, Q.; Tan, X. Dynamic near-optimal control allocation for spacecraft attitude control using a hybrid configuration of actuators. IEEE Trans. Aerosp. Electron. Syst. 2020, 56, 1430–1443. [Google Scholar] [CrossRef]
- Gonzalez-Arriba, D.; Soler, M.; Sanjurjo-Rivo, M.; Kamgarpour, M.; Simarro, J. Robust aircraft trajectory planning under uncertain convective environments with optimal control and rapidly developing thunderstorms. Aerosp. Sci. Technol. 2019, 89, 445–459. [Google Scholar] [CrossRef] [Green Version]
- Pan, H.J.; Ward, J.D. Dimensionless framework for seed recipe design and optimal control of batch crystallization. Ind. Eng. Chem. Res. 2021, 60, 3013–3026. [Google Scholar] [CrossRef]
- Rueda-Escobedo, J.G.; Fridman, E.; Schiffer, J. Data-driven control for linear discrete-time delay systems. arXiv 2020, arXiv:2010.02657. [Google Scholar] [CrossRef]
- Hu, J.W.; Zhan, X.S.; Wu, J.; Yan, H.C. Optimal tracking performance of networked control systems with time-delay and encoding-decoding constraints. Int. J. Control. Autom. Syst. 2020, 18, 1012–1022. [Google Scholar] [CrossRef]
- Gao, W.A.; Bl, A.; Shan, X.B. Integral reinforcement learning-based optimal output feedback control for linear continuous-time systems with input delay. Neurocomputing 2021, 460, 31–38. [Google Scholar]
- Basin, M.; Rodriguez-Gonzalez, J. Optimal control for linear systems with time delay in control input. IEEE Trans. Autom. Control. 2004, 341, 267–278. [Google Scholar] [CrossRef]
- Basin, M.; Rodriguez-Gonzalez, J. Optimal control for linear systems with multiple time delay in control input. IEEE Trans. Autom. Control. 2006, 51, 91–97. [Google Scholar] [CrossRef]
- Meng, W.; Shi, J. A global maximum principle for stochastic optimal control problems with delay and applications. Syst. Control. Lett. 2021, 150, 104909. [Google Scholar] [CrossRef]
- Ma, X.; Qi, Q.; Li, X.; Zhang, H. Optimal control and stablilization for linear continuous-time mean-field systems with delay. arXiv 2020, arXiv:2010.08069v1. [Google Scholar]
- Zhou, Y.S.; Wang, Z.H. Optimal feedback control for linear systems with input delays revisited. J. Optim. Theory Appl. 2014, 163, 989–1017. [Google Scholar] [CrossRef]
- Pei, Y.; Chen, M.; Liang, X.; Li, C.; Zhu, M. Optimizing pulse timings and amounts of biological interventions for a pest regulation model. Nonlinear Anal. Hybrid Syst. 2018, 27, 353–365. [Google Scholar] [CrossRef]
- Pang, L.; Xu, L. Impulsive control on a non-autonomous dispersal almost periodic competition system. Int. J. Comput. Sci. Math. 2019, 10, 95–104. [Google Scholar] [CrossRef]
- Abbasi, Z.; Zamani, I.; Mehra, A.; Shafieirad, M.; Ibeas, A. Optimal control design of impulsive SQEIAR epidemic models with application to COVID-19. Chaos Solitons Fractals 2020, 139, 110054. [Google Scholar] [CrossRef]
- Mohammadi, M.S.; Naghash, A. Robust optimization of impulsive orbit transfers under actuation uncertainties. Aerosp. Sci. Technol. 2019, 85, 246–258. [Google Scholar] [CrossRef]
- Liu, Z.W.; Wen, G.; Yu, X.; Guan, Z.H.; Huang, T. Delayed impulsive control for consensus of multiagent systems with switching communication graphs. IEEE Trans. Cybern. 2020, 50, 3045–3055. [Google Scholar] [CrossRef] [PubMed]
- Yaghoubi, Z.; Talebi, H.A. Cluster consensus of fractional-order non-linear multi-agent systems with switching topology and time-delays via impulsive control. Int. J. Syst. Sci. 2020, 52, 1685–1698. [Google Scholar] [CrossRef]
- Liu, X.; Chen, D.; Liu, Z.; Wang, Y.W. Distributed leaderless impulsive consensus of non-linear multi-agent systems with input saturation. Nonlinear Anal. Hybrid Syst. 2020, 36, 100855. [Google Scholar] [CrossRef]
- Aarz<i>e</i>´n, K.E. A simple event-based PID controller. In Proceedings of the 14th World Congress of IFAC, Beijing, China, 5–9 July 1999. [Google Scholar]
- Åström, K.J.; Bernhardsson, B.M. Comparison of Riemann and Lebesgue sampling for first order stochastic systems. In Proceedings of the 41st IEEE Conference on Decision and Control, Las Vegas, NV, USA, 10–13 December 2002. [Google Scholar]
- Han, X.; Zhao, X.; Sun, T.; Wu, Y.; Zong, G. Event-triggered optimal control for discrete-time switched nonlinear systems with constrained control input. IEEE Trans. Syst. Man Cybern. Syst. 2020, 51, 7850–7859. [Google Scholar] [CrossRef]
- Zhu, W.; Wang, D. Leader-following consensus of multi-agent systems via event-based impulsive control. Meas. Control.-Lond.-Inst. Meas. Control. 2019, 52, 91–99. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Yang, X.; Cao, J. Event-triggered impulsive control for nonlinear delay systems. Automatica 2019, 117, 108981. [Google Scholar] [CrossRef]
- Peng, D.; Li, X. Leader-following synchronization of complex dynamic networks via event-triggered impulsive control. Neurocomputing 2019, 412, 1–10. [Google Scholar] [CrossRef]
- Dan, L.A.; Dan, Y. Exponential synchronization of memristive delayed neural networks via event-based impulsive control method—Sciencedirect. J. Frankl. Inst. 2020, 357, 4437–4457. [Google Scholar]
- Peng, D.; Li, X.; Rakkiyappan, R.; Ding, Y. Stabilization of stochastic delayed systems: Event-triggered impulsive control. Appl. Math. Comput. 2021, 401, 126054. [Google Scholar] [CrossRef]
- Wei, L.; Chen, W.H.; Luo, S. Stabilization of discrete-time switched linear systems with time-varying delays via nearly-periodic impulsive control. J. Frankl. Inst. 2019, 356, 8996–9022. [Google Scholar] [CrossRef]
- Luo, S.; Deng, F.; Chen, W.H. Stability and stabilization of linear impulsive systems with large impulse-delays: A stabilizing delay perspective. Automatica 2021, 127, 109533. [Google Scholar] [CrossRef]
- Sobiesiak, L.A.; Damaren, C.J. Linear quadratic optimal control for systems with continuous and impulsive inputs. In Proceedings of the 53th IEEE Conference on Decision and Control, Los Angeles, CA, USA, 15–17 December 2014. [Google Scholar]
- Zhu, W.; Wang, D.; Liu, L.; Feng, G. Event-based impulsive control of continuous-time dynamic systems and its application to synchronization of memristive neural networks. IEEE Trans. Neural Networks Learn. Syst. 2018, 29, 3599–3609. [Google Scholar]
- Zhu, W.; Yan, C. Consensus analysis of second-order agents with active leader and time delay via impulsive control. In Proceedings of the 30th Chinese Control Conference, Yantai, China, 22–24 July 2011. [Google Scholar]
- Zhu, W.; Jiang, Z.P. Event-based leader-following consensus of multi-agent systems with input time delay. IEEE Trans. Autom. Control. 2015, 60, 1362–1367. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bai, Q.; Zhu, W. Event-Triggered Impulsive Optimal Control for Continuous-Time Dynamic Systems with Input Time-Delay. Mathematics 2022, 10, 279. https://doi.org/10.3390/math10020279
Bai Q, Zhu W. Event-Triggered Impulsive Optimal Control for Continuous-Time Dynamic Systems with Input Time-Delay. Mathematics. 2022; 10(2):279. https://doi.org/10.3390/math10020279
Chicago/Turabian StyleBai, Quanyu, and Wei Zhu. 2022. "Event-Triggered Impulsive Optimal Control for Continuous-Time Dynamic Systems with Input Time-Delay" Mathematics 10, no. 2: 279. https://doi.org/10.3390/math10020279
APA StyleBai, Q., & Zhu, W. (2022). Event-Triggered Impulsive Optimal Control for Continuous-Time Dynamic Systems with Input Time-Delay. Mathematics, 10(2), 279. https://doi.org/10.3390/math10020279