Some Families of Generating Functions Associated with Orthogonal Polynomials and Other Higher Transcendental Functions
Abstract
:1. Introduction, Definitions and Preliminaries
2. Generating Functions of Orthogonal Polynomials
3. Operational Techniques and Hypergeometric Polynomials
4. Concluding Remarks and Observations
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Girejko, E.; Pawłuszewicz, E.; Wyrwas, M. The Z-transform method for sequential fractional difference operators: Theoretical developments and applications of non-integer order systems. In Lecture Notes in Electrical Engineering; Springer: Cham, Switzerland, 2016; Volume 357, pp. 57–67. [Google Scholar]
- Graf, U. Applied Laplace Transforms and Z-transforms for Scientists and Engineers: A Computational Approach using a Mathematica Package; Birkhäuser Verlag: Basel, Switzerland, 2004. [Google Scholar]
- Jury, E.I. Theory and Application of the z-Transform Method; Third Printing; R. E. Krieger Publishing Company: Malabar, FL, USA, 1986. [Google Scholar]
- Palani, S. The z-Transform Analysis of Discrete Time Signals and Systems, Chapter 9 in Signals and Systems, 2nd ed.; Springer Nature Switzerland AG: Cham, Switzerland, 2022; pp. 921–1055. [Google Scholar]
- Srivastava, H.M.; Kashyap, B.R.K. Special Functions in Queuing Theory and Related Stochastic Processes; Academic Press: New York, NY, USA; London, UK, 1982. [Google Scholar]
- Vich, R. z Transform Theory and Applications; D. Reidel Publishing Company: Dordrecht, The Netherlands; Boston, MA, USA; Lancaster, UK; Tokyo, Japan, 1977. [Google Scholar]
- Lando, S.K. Lectures on Generating Functions; Series on Student Mathematical Library; American Mathematical Society: Providence, RI, USA, 2003; Volume 23. [Google Scholar]
- Wilf, H.S. Generatingfunctionology, 2nd ed.; Academic Press: New York, NY, USA; London, UK, 1994. [Google Scholar]
- Szegö, G. Orthogonal Polynomials, 4th ed.; American Mathematical Society Colloquium Publications; American Mathematical Society: Providence, RI, USA, 1975; Volume 23. [Google Scholar]
- Atakishiyev, N.M.; Rahman, M.; Suslov, S.K. On classical orthogonal polynomials. Constr. Approx. 1995, 11, 181–223. [Google Scholar] [CrossRef]
- Erdélyi, A.; Magnus, W.; Oberhettinger, F.; Tricomi, F.G. Higher Transcendental Functions; McGraw-Hill Book Company: New York, NY, USA; Toronto, ON, Canada; London, UK, 1955; Volume III. [Google Scholar]
- Rainville, E.D. Special Functions; Macmillan Company: New York, NY, USA, 1960; Reprinted by Chelsea Publishing Company: Bronx, NY, USA, 1971. [Google Scholar]
- McBride, E.B. Obtaining Generating Functions; Springer Tracts in Natural Philosophy; Springer: New York, NY, USA; Berlin/Heidelberg, Germany, 1971. [Google Scholar]
- Srivastava, H.M.; Manocha, H.L. A Treatise on Generating Functions; Halsted Press (Ellis Horwood Limited, Chichester); John Wiley and Sons: New York, NY, USA; Chichester, UK; Brisbane, Australia; Toronto, ON, Canada, 1984. [Google Scholar]
- Bailey, W.N. Generalized Hypergeometric Series; Cambridge Tracts in Mathematics and Mathematical Physics; Cambridge University Press: Cambridge, UK; London, UK; New York, NY, USA, 1935; Reprinted by Stechert-Hafner Service Agency: New York, NY, USA; London, UK, 1964; Volume 32. [Google Scholar]
- Erdélyi, A.; Magnus, W.; Oberhettinger, F.; Tricomi, F.G. Higher Transcendental Functions; McGraw-Hill Book Company: New York, NY, USA; Toronto, ON, Canada; London, UK, 1953; Volume I. [Google Scholar]
- Slater, L.J. Generalized Hypergeometric Functions; Cambridge University Press: Cambridge, UK; London, UK; New York, NY, USA, 1966. [Google Scholar]
- Seaborn, J.B. Hypergeometric Functions and Their Applications; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 1991. [Google Scholar]
- Srivastava, H.M.; Karlsson, P.W. Multiple Gaussian Hypergeometric Series; Halsted Press (Ellis Horwood Limited, Chichester); John Wiley and Sons: New York, NY, USA; Chichester, UK; Brisbane, Australia; Toronto, ON, Canada, 1985. [Google Scholar]
- Kogbetliantz, E. Sur les développements de Laguerre. C. R. Acad. Sci. Paris 1932, 194, 1422–1424. [Google Scholar]
- Sonin, N.J. Researches sur les fonctions cylindriques et le développement des fonctions continues en séries. Math. Ann. 1880, 16, 1–80. [Google Scholar] [CrossRef] [Green Version]
- Krall, H.L.; Frink, O. A new class of orthogonal polynomials: The Bessel polynomials. Trans. Amer. Math. Soc. 1949, 65, 100–115. [Google Scholar] [CrossRef]
- Galvez, F.; Dahesa, J.S. Some open problems of generalized Bessel functions. J. Phys. A Math. Gen. 1984, 17, 2759–2766. [Google Scholar] [CrossRef]
- Werner, U.; Pietzch, W. Die Polynome Sn(x) zur Darstellung der Energiespekfunktionen idealer Turbulenzfelder. Zeitschr. Angew. Math. Mech. 1978, 58, 166–168. [Google Scholar] [CrossRef]
- Srivastava, H.M. Some orthogonal polynomials representing the energy spectral functions for a family of isotropic turbulence fields. Zeitschr. Angew. Math. Mech. 1984, 64, 255–257. [Google Scholar] [CrossRef]
- Izadi, M.; Srivastava, H.M. A novel matrix technique for multi-order pantograph differential equations of fractional order. Proc. Roy. Soc. London Ser. A Math. Phys. Engrg. Sci. 2021, 477, 2021031. [Google Scholar] [CrossRef]
- Grosswald, E. Bessel Polynomials; Lecture Notes in Mathematics; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 1978; Volume 698. [Google Scholar]
- Jacobi, C.G.J. Untersuchungen über die Differentialgleichung der hypergeometrischen Reihe. J. Reine Angew. Math. 1859, 56, 149–165, see also Gesammelte Werke. 6, 184–202. [Google Scholar]
- Erdélyi, A.; Magnus, W.; Oberhettinger, F.; Tricomi, F.G. Higher Transcendental Functions; McGraw-Hill Book Company: New York, NY, USA; Toronto, ON, Canada; London, UK, 1953; Volume II. [Google Scholar]
- Pölya, G.; Szegö, G. Aufgaben und Lehrsätze aus der Analysis; Translated from the German by D. Aeppli; Springer: New York, NY, USA; Berlin/Heidelberg, Germany, 1972; Volume 1. [Google Scholar]
- Carlitz, L. The generating function for the Jacobi polynomial. Rend. Sem. Mat. Univ. Padova 1967, 38, 86–88. [Google Scholar]
- Askey, R. Jacobi’s generating function for Jacobi polynomials. Proc. Amer. Math. Soc. 1978, 71, 243–246. [Google Scholar]
- Foata, D.; Leroux, P. Polynômes de Jacobi, interprétation combinatoire et fonction génératrice. Proc. Amer. Math. Soc. 1983, 87, 47–53. [Google Scholar]
- Abramowitz, M.; Stegun, I.A. (Eds.) Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables; Applied Mathematics Series; National Bureau of Standards: Washington, DC, USA, 1972; Volume 55, Ninth Printing. [Google Scholar]
- Kubo, I. Generating functions of Jacobi polynomials. Commun. Stochast. Anal. 2009, 3, 249–267. [Google Scholar]
- Srivastava, H.M. A note on Jacobi’s generating function for the Jacobi polynomials. Proc. Japan Acad. Ser. A Math. Sci. 1985, 61, 201–202. [Google Scholar] [CrossRef]
- Srivastava, H.M. Generating functions for Jacobi and Laguerre polynomials. Proc. Amer. Math. Soc. 1969, 23, 590–595. [Google Scholar] [CrossRef]
- Brown, J.W. New generating functions for classical polynomials. Proc. Amer. Math. Soc. 1969, 21, 263–268. [Google Scholar] [CrossRef]
- Calvez, L.-C.; Génin, R. Sur les relations entre les fonctions génératrices et les formules de type Rodrigues. C. R. Acad. Sci. Paris Sér. A-B 1969, 269, A651–A654. [Google Scholar]
- Carlitz, L. A bilinear generating function for the Jacobi polynomials. Boll. Un. Mat. Ital. Ser. 3 1963, 18, 87–89. [Google Scholar]
- Feldheim, E. Relations entre les polynomes de Jacobi, Laguerre et Hermite. Acta Math. 1941, 74, 117–138. [Google Scholar] [CrossRef]
- Cohen, M.E. Generating functions for the Jacobi polynomial. Proc. Amer. Math. Soc. 1976, 57, 271–275. [Google Scholar] [CrossRef]
- Milch, P.R. A probabilistic proof of a formula for Jacobi polynomials by L. Carlitz. Proc. Camb. Philos. Soc. 1968, 64, 695–698. [Google Scholar] [CrossRef]
- Whittaker, E.T.; Watson, G.N. A Course of Modern Analysis: An Introduction to the General Theory of Infinite Processes and of Analytic Functions; with an Account of the Principal Transcendental Functions, 4th ed.; Cambridge University Press: Cambridge, UK; London, UK; New York, NY, USA, 1927. [Google Scholar]
- Srivastava, H.M.; Singhal, J.P. New generating functions for Jacobi and related polynomials. J. Math. Anal. Appl. 1973, 41, 748–752. [Google Scholar] [CrossRef] [Green Version]
- Srivastava, H.M.; Singhal, J.P. A unified presentation of certain classical polynomials. Math. Comput. 1972, 26, 969–975. [Google Scholar] [CrossRef]
- Strehl, V. Combinatorics of Jacobi-configurations. III: The Srivastava-Singhal generating function. Discrete Math. 1988, 73, 221–232. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.-C.; Ismail, M.E.-H. On asymptotics of Jacobi polynomials. SIAM J. Math. Anal. 1991, 22, 1442–1449. [Google Scholar] [CrossRef]
- Gawronski, W.; Shawyer, B.L.R. Strong asymptotics and the limit distribution of the zeros of Jacobi polynomials . In Progress in Approximation Theory; Nevai, P., Pinkus, A., Eds.; Academic Press: New York, NY, USA; London, UK, 1991; pp. 379–404. [Google Scholar]
- Carlitz, L. A class of generating functions. SIAM J. Math. Anal. 1977, 8, 518–532. [Google Scholar] [CrossRef]
- Gaboury, S.; Tremblay, R. A further investigation of generating functions related to pairs of inverse functions with applications to generalized degenerate Bernoulli polynomials. Bull. Korean Math. Soc. 2014, 51, 831–845. [Google Scholar] [CrossRef] [Green Version]
- Ismail, M.E.-H.; Simeonov, P. Inequalities and asymptotics for a terminating 4F3 series. Ill. J. Math. 2007, 51, 861–881. [Google Scholar]
- Izen, S.H. Refined estimates on the growth rate of Jacobi polynomials. J. Approx. Theory 2007, 144, 54–66. [Google Scholar] [CrossRef]
- Maier, R.S. Extensions of the classical transformations of the hypergeometric function 3F2. Adv. Appl. Math. 2019, 105, 25–47. [Google Scholar] [CrossRef] [Green Version]
- Carlitz, L. Some generating functions for Laguerre polynomials. Duke Math. J. 1968, 35, 825–827. [Google Scholar] [CrossRef]
- Bailey, W.N. The generating function of Jacobi polynomials. J. Lond. Math. Soc. 1938, 13, 8–12. [Google Scholar] [CrossRef]
- Erdélyi, A. Über die erzeugende Funktion der Jacobischen Polynome. J. Lond. Math. Soc. 1937, 12, 56–57. [Google Scholar] [CrossRef]
- Watson, G.N. Notes on generating functions of polynomials: (4) Jacobi polynomials. J. Lond. Math. Soc. 1934, 9, 22–28. [Google Scholar] [CrossRef]
- Appell, P. Sur les Fonctions Hypergéométriques de Plusieurs Variables; Mémor. Sci. Math. Fasc. 3; Gauthier-Villars: Paris, France, 1925. [Google Scholar]
- Appell, P.; de Fériet, J.K. Fonctions Hypergéométriques et Hypersphériques; Polynômes d’Hermite; Gauthier-Villars: Paris, France, 1926. [Google Scholar]
- Stanton, D. A short proof of a generating function for Jacobi polynomials. Proc. Amer. Math. Soc. 1980, 80, 398–400. [Google Scholar] [CrossRef]
- Srivastava, H.M. An elementary proof of Bailey’s bilinear generating function for Jacobi polynomials and of its q-analogue. IMA J. Appl. Math. 1982, 29, 275–280. [Google Scholar] [CrossRef]
- Srivastava, H.M. A q-extension of Bailey’s bilinear generating function for the Jacobi polynomials. Rocky Mountain J. Math. 1983, 13, 461–465. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Gupta, L.C. Some families of generating functions for the Jacobi polynomials. Comput. Math. Appl. 1995, 29, 29–35. [Google Scholar] [CrossRef] [Green Version]
- Hille, E. On Laguerre’s series. I, II and III. Proc. Natl. Acad. Sci. USA 1926, 12, 261–269; 348–352. [Google Scholar] [CrossRef]
- Hardy, G.H. Summation of a series of polynomials of Laguerre. J. Lond. Math. Soc. 1932, 7, 138–139; 192. [Google Scholar] [CrossRef]
- Watson, G.N. Notes on generating functions of polynomials: (1) Laguerre polynomials. J. Lond. Math. Soc. 1933, 8, 189–192. [Google Scholar] [CrossRef]
- Watson, G.N. A note on the polynomials of Hermite and Laguerre. J. Lond. Math. Soc. 1938, 13, 204–209. [Google Scholar] [CrossRef]
- Watson, G.N. A Treatise on the Theory of Bessel Functions, 2nd ed.; Cambridge University Press: Cambridge, UK; London, UK; New York, NY, USA, 1944. [Google Scholar]
- Bailey, W.N. On the product of two Legendre polynomials with different arguments. Proc. Lond. Math. Soc. Ser. 2 1936, 41, 215–220. [Google Scholar] [CrossRef]
- Bottema, O. On a generalization of a formula of Hille and Hardy in the theory of Laguerre polynomlals. Nederl. Akad. Wetensch. Proc. Ser. A 1946, 49, 1032–1036. [Google Scholar]
- Brafman, F. An ultrasherical generating function. Pacific J. Math. 1957, 7, 1319–1323. [Google Scholar] [CrossRef] [Green Version]
- Carlitz, L. Note on bilinear generating functions for the Laguerre polynomial. Boll. Un. Mat. Ital. Ser. 3 1961, 16, 24–30. [Google Scholar]
- Carlitz, L. Transformation of certain bilinear generating functions. Ann. Mat. Pura Appl. Ser. 4 1970, 86, 155–168. [Google Scholar] [CrossRef]
- Erdélyi, A. Transformation einer gewissen nach Produkten konfluenter hypergeometricher Funktionen fortschreitenden Reihe. Compositio Math. 1939, 6, 336–347. [Google Scholar]
- Foata, D.; Strehl, V. Une extension multilinéairede la formule d’Erdélyi pour les produits de fonctions hypergéométriques confluentes. C. R. Acad. Sci. Paris Sér. I Math. 1981, 293, 517–520. [Google Scholar]
- Hansen, E.R. A Table of Series and Products; Prentice-Hall: Englewood Cliffs, NJ, USA, 1975. [Google Scholar]
- Lin, S.-D.; Srivastava, H.M.; Wong, M.-M. Some applications of Srivastava’s theorem involving a certain family of generalized and extended hypergeometric polynomials. Filomat 2015, 29, 1811–1819. [Google Scholar] [CrossRef]
- Lin, S.-D.; Srivastava, H.M.; Yao, J.-C. Some classes of generating relations associated with a family of the generalized Gauss type hypergeometric functions. Appl. Math. Inform. Sci. 2015, 9, 1731–1738. [Google Scholar]
- Meixner, J. Umformung gewisser Reihen, deren Glieder Produkte hypergeometrischer Funktionen sind. Deutsche Math. 1942, 6, 341–349. [Google Scholar]
- Panda, R. On a new class of polynomials. Glasgow Math. J. 1977, 18, 105–108. [Google Scholar] [CrossRef] [Green Version]
- Panda, R. A note on certain results involving the polynomials (x). Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. Ser. 8 1977, 63, 324–327. [Google Scholar]
- Srivastava, H.M. An extension of the Hille-Hardy formula. Math. Comput. 1969, 23, 305–311. [Google Scholar] [CrossRef]
- Srivastava, H.M. Some bilinear generating functions. Proc. Natl. Acad. Sci. USA 1969, 64, 462–465. [Google Scholar] [CrossRef]
- Srivastava, H.M. A note on certain formulas involving hypergeometric functions. Glas. Mat. Ser. III 1969, 24, 201–205. [Google Scholar]
- Srivastava, H.M. Some formulas of J. Meixner. Arch. Rational Mech. Anal. 1971, 43, 363–366. [Google Scholar] [CrossRef]
- Srivastava, H.M. A multilinear generating function for the Konhauser sets of biorthogonal polynomials suggested by the Laguerre polynomials. Pacific J. Math. 1985, 117, 183–191. [Google Scholar] [CrossRef] [Green Version]
- Srivastava, H.M.; Gangopadhyay, G. The absorption bandshape function of a molecule from a thermocoherent state and some associated multilinear generating-function relationships for Laguerre polynomials. Russian J. Math. Phys. 2004, 11, 359–367. [Google Scholar]
- Srivastava, H.M.; Singhal, J.P. Some formulas involving the products of several Jacobi or Laguerre polynomials. Acad. Roy. Belg. Bull. Cl. Sci. Sér. 5 1972, 58, 1238–1247. [Google Scholar] [CrossRef]
- Srivastava, R. A theorem on generating functions and its applications. Appl. Math. Lett. 1990, 3, 71–73. [Google Scholar] [CrossRef] [Green Version]
- Srivastava, R.; Cho, N.E. Generating functions for a certain class of incomplete hypergeometric polynomials. Appl. Math. Comput. 2012, 219, 3219–3225. [Google Scholar] [CrossRef]
- Weisner, L. Group-theoretic origin of certain generating functions. Pacific J. Math. 1955, 5, 1033–1039. [Google Scholar] [CrossRef] [Green Version]
- Carlitz, L. Some generating functions of Weisner. Duke Math. J. 1961, 28, 523–529. [Google Scholar] [CrossRef]
- Miller, W., Jr. Lie Theory and Special Functions; Mathematics in Science and Engineering; A Series of Monographs and Textbooks; Academic Press: London, UK; New York, NY, USA, 1968; Volume 43. [Google Scholar]
- Talman, J.D. Special Functions: A Group Theoretic Approach; Based on Lectures and with an Introduction by E. P. Wigner; Mathematical Physics Monograph Series; W. A. Benjamin Incorporated: New York, NY, USA; Amsterdam, The Netherlands, 1968. [Google Scholar]
- Wigert, S. Contributions à la théorie des polynômes d’Abel-Laguerre. Ark. Mat. Astronom. Fys. 1921, 15, 1–22. [Google Scholar]
- Foata, D. A combinatorial proof of the Mehler formula. J. Combin. Theory Appl. Ser. A 1978, 24, 367–376. [Google Scholar] [CrossRef] [Green Version]
- Foata, D. Some Hermite polynomial identities and their combinatorics. Adv. Appl. Math. 1981, 2, 250–259. [Google Scholar] [CrossRef] [Green Version]
- Foata, D.; Garsia, A.M. A combinatorial approach to the Mehler formulas for Hermite polynomials. In Relations between Combinatorics and Other Parts of Mathematics, Proceedings of the Symposia in Pure Mathematics, Ohio State University, Columbus, OH, USA, 20–23 March 1978; Ray-Chaudhury, D.K., Ed.; American Mathematical Society: Providence, RI, USA, 1979; Volume 34, pp. 163–179. [Google Scholar]
- Ghanmi, A. Mehler’s formulas for the univariate complex Hermitepolynomials and applications. Math. Methods Appl. Sci. 2017, 40, 7540–7545. [Google Scholar] [CrossRef]
- Sack, R.A. Generalization of Mehler’s formula on Hermite polynomials to an arbitrary number of variables. Jñānābha Sect. A 1975, 5, 774–796. [Google Scholar]
- Srivastava, H.M.; Singhal, J.P. Some extensions of the Mehler formula. Proc. Amer. Math. Soc. 1972, 31, 135–141. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Singhal, J.P. Some extensions of the Mehler formula. II. Duke Math. J. 1972, 39, 173–177. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Singhal, J.P. Some generalizations of Mehler’s formula. Rocky Mountain J. Math. 1972, 2, 283–287. [Google Scholar] [CrossRef]
- Viskov, O.V. On the Mehler formula for Hermite polynomials. Dokl. Math. 2008, 77, 1–4. [Google Scholar] [CrossRef]
- Erdélyi, A.; Magnus, W.; Oberhettinger, F.; Tricomi, F.G. Tables of Integral Transforms; McGraw-Hill Book Company: New York, NY, USA; Toronto, ON, Canada; London, UK, 1954; Volume I. [Google Scholar]
- Widder, D.V. The Laplace Transform; Princeton Mathematical Series; Princeton University Press: Princeton, NJ, USA, 1941; Volume 6. [Google Scholar]
- Erdélyi, A.; Magnus, W.; Oberhettinger, F.; Tricomi, F.G. Tables of Integral Transforms; McGraw-Hill Book Company: New York, NY, USA; Toronto, ON, Canada; London, UK, 1954; Volume II. [Google Scholar]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; North-Holland Mathematical Studies; Elsevier (North-Holland) Science Publishers: Amsterdam, The Netherlands; London, UK; New York, NY, USA, 2006; Volume 204. [Google Scholar]
- Sneddon, I.N. The Use of Integral Transforms; McGraw-Hill Book Company: New York, NY, USA; London, UK; Toronto, ON, Canada, 1972. [Google Scholar]
- Srivastava, H.M. An introductory overview of fractional-calculus operators based upon the Fox-Wright and related higher transcendental functions. J. Adv. Engrg. Comput. 2021, 5, 135–166. [Google Scholar] [CrossRef]
- Luke, Y.L. The Special Functions and Their Approximations; Volume I, Mathematics in Science and Engineering, Volume 53-I, A Series of Monographs and Textbooks; Academic Press: New York, NY, USA; London, UK, 1969. [Google Scholar]
- Srivastava, H.M. Some parametric and argument variations of the operators of fractional calculus and related special functions and integral transformations. J. Nonlinear Convex Anal. 2021, 22, 1501–1520. [Google Scholar]
- Srivastava, H.M. Some general families of integral transformations and related results. Appl. Math. Comput. Sci. 2022, 6, 27–41. [Google Scholar]
- Srivastava, H.M.; Buschman, R.G. Some polynomials defined by generating relations. Trans. Amer. Math. Soc. 1975, 205, 360–370, see also Addendum. ibid 1977, 226, 393–394. [Google Scholar] [CrossRef]
- Chaundy, T.W. An extension of hypergeometric functions (I). Quart. J. Math. Oxford Ser. 1943, 14, 55–78. [Google Scholar] [CrossRef]
- Burchnall, J.L. The Bessel polynomials. Canad. J. Math. 1951, 3, 62–68. [Google Scholar] [CrossRef]
- Rainville, E.D. Generating functions for Bessel and related polynomials. Canad. J. Math. 1953, 5, 104–106. [Google Scholar] [CrossRef]
- Brafman, F. Some generating functions of Laguerre and Hermite polynomials. Canad. J. Math. 1957, 9, 180–187. [Google Scholar] [CrossRef]
- Gould, H.W.; Hopper, A.T. Operational formulas connected with two generalizations of Hermite polynomials. Duke Math. J. 1962, 29, 51–63. [Google Scholar] [CrossRef]
- Fox, C. The aymptotic expansion of generalized hypergeometric functions. Proc. Lond. Math. Soc. Ser. 2 1928, 27, 389–400. [Google Scholar] [CrossRef]
- Wright, E.M. The aymptotic expansion of the generalized hypergeometric function. J. Lond. Math. Soc. 1935, 10, 286–293. [Google Scholar] [CrossRef]
- Wright, E.M. The aymptotic expansion of the generalized hypergeometric function. Proc. Lond. Math. Soc. Ser. 2 1940, 46, 389–408. [Google Scholar] [CrossRef]
- Srivastava, H.M. Charles Fox. Bull. London Math. Soc. 1980, 12, 67–70. [Google Scholar] [CrossRef]
- Kilbas, A.A.; Saigo, M. H-Transforms: Theory and Applications; Analytical Methods and Special Functions: An International Series of Monographs in Mathematics; Chapman and Hall (A CRC Press Company): Boca Raton, FL, USA; London, UK; New York, NY, USA, 2004; Volume 9. [Google Scholar]
- Srivastava, H.M.; Gupta, K.C.; Goyal, S.P. The H-Functions of One and Two Variables with Applications; South Asian Publishers: New Delhi, India; Madras, India, 1982. [Google Scholar]
- Srivastava, H.M. A survey of some recent developments on higher transcendental functions of analytic number theory and applied mathematics. Symmetry 2021, 13, 2294. [Google Scholar] [CrossRef]
- Mittag-Leffler, G.M. Sur la nouvelle fonction Eα(x). C. R. Acad. Sci. Paris 1903, 137, 554–558. [Google Scholar]
- Wiman, A. Über den Fundamentalsatz in der Theorie der Funcktionen Eα(x). Acta Math. 1905, 29, 191–201. [Google Scholar] [CrossRef]
- Wiman, A. Über die Nullstellen der Funktionen Eα(x). Acta Math. 1905, 29, 217–234. [Google Scholar] [CrossRef]
- Wright, E.M. The aymptotic expansion of the generalized Bessel function. Proc. Lond. Math. Soc. Ser. 2 1933, 38, 257–270. [Google Scholar]
- Lauricella, G. Sulle funzioni ipergeometriche a più variabili. Rend. Circ. Mat. Palermo 1893, 7, 111–158. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Panda, R. An integral representation for the product of two Jacobi polynomials. J. Lond. Math. Soc. Ser. 2 1976, 12, 419–425. [Google Scholar] [CrossRef]
- Srivastava, H.M. Certain results involving generalized hypergeometric functions. SIAM J. Math. Anal. 1970, 1, 75–81. [Google Scholar] [CrossRef]
- Nikiforov, A.F.; Uvarov, V.B. Special Functions of Mathematical Physics: A Unified Introduction and Applications; Translated from the Russian by R. P. Boas; Birkhäuser: Basel, Switzerland; Boston, MA, USA, 1988. [Google Scholar]
- Andrews, G.E.; Askey, R.; Roy, R. Special Functions. In Encyclopedia of Mathematics and Its Applications; Cambridge University Press: Cambridge, UK; London, UK; New York, NY, USA, 1999; Volume 71. [Google Scholar]
- Andrews, L.C. Special Functions for Engineers and Applied Mathematicians; Macmillan Company: New York, NY, USA, 1984. [Google Scholar]
- Askey, R. Orthogonal Polynomials and Special Functions; Conference Series in Applied Mathematics; Society of Industrial and Applied Mathematics: Philadelphia, PA, USA, 1975; Volume 21. [Google Scholar]
- Boas, R.P., Jr.; Buck, R.C. Polynomial defined by generating Functions. Amer. Math. Monthly 1956, 63, 626–632. [Google Scholar] [CrossRef]
- Boas, R.P., Jr.; Buck, R.C. Polynomial Expansions of Analytic Functions; Springer: Berlin/Heidelberg, Germany, 1958. [Google Scholar]
- Carlson, B.C. Special Functions of Applied Mathematics; Academic Press: New York, NY, USA; San Francisco, CA, USA; London, UK, 1977. [Google Scholar]
- Lebedev, N.N. Special Functions and Their Applications; Translated from the Russian by R. A. Silverman; Prentice-Hall: Englewood Cliffs, NJ, USA, 1965. [Google Scholar]
- Luke, Y.L. The Special Functions and Their Approximations; Volume II, Mathematics in Science and Engineering, Volume 53-II, A Series of Monographs and Textbooks; Academic Press: New York, NY, USA; London, UK, 1969. [Google Scholar]
- Luke, Y.L. Mathematical Functions and Their Approximations; Academic Press: New York, NY, USA; San Francisco, CA, USA; London, UK, 1975. [Google Scholar]
- Magnus, W.; Oberhettinger, F.; Soni, R.P. Formulas and Theorems for the Special Functions of Mathematical Physics; Third Enlarged Edition, Die Grundlehren der Mathematischen Wissenschaften in Einzeldarstellungen mit besonderer Berücksichtingung der Anwendungsgebiete, Bd. 52; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 1966. [Google Scholar]
- Olver, F.W.J.; Lozier, D.W.; Boisvert, R.F.; Clark, C.W. (Eds.) NIST Handbook of Mathematical Functions; With 1 CD-ROM (Windows, Macintosh and UNIX); U. S. Department of Commerce, National Institute of Standards and Technology: Washington, DC, USA; Cambridge University Press: Cambridge, UK; London, UK; New York, NY, USA, 2010.
- Rota, G.-C.; Kahaner, D.; Odlyzko, A. Finite Operator Calculus; Academic Press: New York, NY, USA; London, UK, 1975. [Google Scholar]
- Temme, N.M. Special Functions: An Introduction to Classical Functions of Mathematical Physics; A Wiley-Interscience Publication; John Wiley and Sons: New York, NY, USA; Chichester, UK; Brisbane, Australia; Toronto, ON, Canada, 1996. [Google Scholar]
- Ahmed, S.; Khan, M.A. On some new type of generating functions of generalized Poisson-Charlier polynomials. Commun. Korean Math. Soc. 2022, 37, 293–301. [Google Scholar]
- Luo, M.-J.; Raina, R.K.; Zhao, S.-H. Certain results on generating functions related to the associated Meixner-Pollaczek polynomials. Integral Transforms Spec. Funct. 2022, 33, 496–512. [Google Scholar] [CrossRef]
- Masjed-Jamei, M.; Moalemi, Z. Sine and cosine types of generating functions. Appl. Anal. Discrete Math. 2021, 15, 82–105. [Google Scholar] [CrossRef]
- Ricci, P.E.; Srivastava, R. A note on the Laguerre-type Appell and hypergeometric polynomials. Mathematics 2022, 10, 1951. [Google Scholar] [CrossRef]
- Simsek, Y. Applications of constructed new families of generating-type functions interpolating new and known classes of polynomials and numbers. Math. Methods Appl. Sci. 2021, 44, 11245–11268. [Google Scholar] [CrossRef]
- Aomoto, K.; Kita, M. Theory of Hypergeometric Functions; with an Appendix by T. Kohno; Springer Monographs in Mathematics; Springer: Tokyo, Japan; Dordrecht, The Netherlands; Berlin/Heidelberg, Germany; London, UK; New York, NY, USA, 2011. [Google Scholar]
- Sadykov, T.M. Computational problems of multivariate hypergeometric theory. Program. Comput. Softw. 2018, 44, 131–137. [Google Scholar]
- Sadykov, T.M.; Tsikh, A.K. Hypergeometric and Algebraic Functions in Several Variables; Nauka: Moscow, Russia, 2014. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Srivastava, H.M. Some Families of Generating Functions Associated with Orthogonal Polynomials and Other Higher Transcendental Functions. Mathematics 2022, 10, 3730. https://doi.org/10.3390/math10203730
Srivastava HM. Some Families of Generating Functions Associated with Orthogonal Polynomials and Other Higher Transcendental Functions. Mathematics. 2022; 10(20):3730. https://doi.org/10.3390/math10203730
Chicago/Turabian StyleSrivastava, Hari Mohan. 2022. "Some Families of Generating Functions Associated with Orthogonal Polynomials and Other Higher Transcendental Functions" Mathematics 10, no. 20: 3730. https://doi.org/10.3390/math10203730
APA StyleSrivastava, H. M. (2022). Some Families of Generating Functions Associated with Orthogonal Polynomials and Other Higher Transcendental Functions. Mathematics, 10(20), 3730. https://doi.org/10.3390/math10203730