Well-Posedness Results of Certain Variational Inequalities
Abstract
:1. Introduction
2. Problem Formulation and Preliminaries
3. Well-Posedness and Generalized Well-Posedness of (CVI)
4. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Dafermos, S. Traffic equilibria and variational inequalities. Transp. Sci. 1980, 14, 42–54. [Google Scholar] [CrossRef] [Green Version]
- Hartman, P.; Stampacchia, G. On some nonlinear elliptic differential functional equations. Acta Math. 1966, 115, 271–310. [Google Scholar] [CrossRef]
- Smith, M.J. Existence, uniqueness, and stability of traffic equilibria. Transp. Res. B 1979, 13, 295–304. [Google Scholar] [CrossRef]
- Scrimali, L. The financial equilibrium problem with implicit budget constraints. CEJOR 2008, 16, 191–203. [Google Scholar] [CrossRef]
- Borner, K.; Hardy, E.; Herr, B.; Hollooway, T.; Paley, W.B. Taxonomy visualization in support of the semi-automatic validation and optimization of organizational schemas. J. Inform. 2007, 1, 214–225. [Google Scholar] [CrossRef]
- Fang, Y.P.; Huang, N.J.; Yao, J.C. Well-posedness of mixed variational inequalities, inclusion problems and fixed point problems. J. Global Optim. 2008, 41, 117–133. [Google Scholar] [CrossRef]
- Fang, Y.P.; Hu, R. Parametric well-posedness for variational inequalities defined by bifunctions. Comput. Math. Appl. 2007, 53, 1306–1316. [Google Scholar] [CrossRef] [Green Version]
- Ceng, L.C.; Gupta, H.; Wen, C.F. Well-posedness by perturbations of variational hemivariational inequalities with perturbations. Filomat 2012, 26, 881–895. [Google Scholar] [CrossRef] [Green Version]
- Lv, S.; Xiao, Y.B.; Liu, Z.B.; Li, X.S. Well-posedness by perturbations for variational-hemivariational inequalities. J. Appl. Math. 2012, 2012, 804032. [Google Scholar] [CrossRef] [Green Version]
- Shu, Q.Y.; Hu, R.; Xiao, Y.B. Metric characterizations for well-psedness of split hemivariational inequalities. J. Inequal. Appl. 2018, 2018, 190. [Google Scholar] [CrossRef]
- Wang, Y.M.; Xiao, Y.B.; Wang, X.; Cho, Y.J. Equivalence of well-posedness between systems of hemivariational inequalities and inclusion problems. J. Nonlinear Sci. Appl. 2016, 9, 1178–1192. [Google Scholar] [CrossRef] [Green Version]
- Xiao, Y.B.; Huang, N.J.; Wong, M.M. Well-posedness of hemivariational inequalities and inclusion problems. Taiwan. J. Math. 2011, 15, 1261–1276. [Google Scholar] [CrossRef]
- Heemels, P.M.H.; Camlibel, M.K.C.; Schaft, A.J.V.; Schumacher, J.M. Well-posedness of the complementarity class of hybrid systems. In Proceedings of the IFAC 15th Triennial World Congress, Barcelona, Spain, 21–26 July 2002. [Google Scholar]
- Fang, Y.P.; Hu, R.; Huang, N.J. Well-posedness for equilibrium problems and for optimization problems with equilibrium constraints. Comput. Math. Appl. 2008, 55, 89–100. [Google Scholar] [CrossRef] [Green Version]
- Lignola, M.B.; Morgan, J. α-Well-posedness for Nash equilibria and for optimization problems with Nash equilibrium constraints. J. Global Optim. 2006, 36, 439–459. [Google Scholar] [CrossRef] [Green Version]
- Tykhonov, A.N. On the stability of the functional optimization. USSR Comput. Math. Math. Phys. 1966, 6, 26–33. [Google Scholar]
- Levitin, E.S.; Polyak, B.T. Convergence of minimizing sequences in conditional extremum problems. Sov. Math. Dokl. 1996, 7, 764–767. [Google Scholar]
- Ceng, L.C.; Hadjisavvas, N.; Schaible, S.; Yao, J.C. Well-posedness for mixed quasivariational-like inequalities. J. Optim. Theory Appl. 2008, 139, 109–125. [Google Scholar] [CrossRef]
- Chen, J.W.; Wang, Z.; Cho, Y.J. Levitin-Polyak well-posedness by perturbations for systems of set-valued vector quasi-equilibrium problems. Math. Meth. Oper. Res. 2013, 77, 33–64. [Google Scholar] [CrossRef]
- Lalitha, C.S.; Bhatia, G. Well-posedness for variational inequality problems with generalized monotone set-valued maps. Numer. Funct. Anal. Optim. 2009, 30, 548–565. [Google Scholar] [CrossRef]
- Lignola, M.B. Well-posedness and L-well-posedness for quasivariational inequalities. J. Optim. Theory Appl. 2006, 128, 119–138. [Google Scholar] [CrossRef] [Green Version]
- Lignola, M.B.; Morgan, J. Well-posedness for optimization problems with constraints defined by variational inequalities having a unique solution. J. Global Optim. 2000, 16, 57–67. [Google Scholar] [CrossRef]
- Ceng, L.C.; Yao, J.C. Well-posedness of generalized mixed variational inequalities, inclusion problems and fixed-point problems. Nonlinear Anal. 2008, 69, 4585–4603. [Google Scholar] [CrossRef]
- Fang, Y.P.; Huang, N.J.; Yao, J.C. Well-posedness by perturbations of mixed variational inequalities in Banach spaces. Eur. J. Oper. Res. 2010, 201, 682–692. [Google Scholar] [CrossRef]
- Huang, X.X.; Yang, X.Q.; Zhu, D.L. Levitin-Polyak well-posedness of variational inequality problems with functional constraints. J. Glob. Optim. 2009, 44, 159–174. [Google Scholar] [CrossRef]
- Jayswal, A.; Jha, S. Well-posedness for generalized mixed vector variational-like inequality problems in Banach space. Math. Commun. 2017, 22, 287–302. [Google Scholar]
- Jayswal, A.; Choudhary, S. Exponential type vector variational-like inequalities and nonsmooth vector optimization problems. J. Appl. Math. Comput. 2015, 49, 127–143. [Google Scholar] [CrossRef]
- Jayswal, A.; Choudhary, S.; Ahmad, I. Second order monotonocity and second order variational type inequality problems. Rend. Del Circ. Mat. Palermo 2016, 65, 123–137. [Google Scholar]
- Lalitha, C.S.; Bhatia, G. Well-posedness for parametric quasivariational inequality problems and for optimization problems with quasivariational inequality constraints. Optimization 2010, 59, 997–1011. [Google Scholar] [CrossRef]
- Lin, L.J.; Chuang, C.S. Well-posedness in the generalized sense for variational inclusion and disclusion problems and well-posedness for optimization problems with constraint. Nonlinear Anal. 2009, 70, 3609–3617. [Google Scholar] [CrossRef]
- Muangchoo, K. A viscosity type projection method for solving pseudomonotone variational inequalities. Nonlinear Funct. Anal. Appl. 2021, 26, 347–371. [Google Scholar]
- Ram, T.; Kim, J.K.; Kour, R. On optimal solutions of well-posed problems and variational inequalities. Nonlinear Funct. Anal. Appl. 2021, 26, 781–792. [Google Scholar]
- Virmani, G.; Srivastava, M. Various types of well-posedness for mixed vector quasivariational-like inequality using bifunctions. J. Appl. Math. Inform. 2014, 32, 427–439. [Google Scholar] [CrossRef] [Green Version]
- Panagiotopoulos, P.D. Nonconvex energy functions, hemivariational inequalities and substationarity principles. Acta Mech. 1983, 48, 111–130. [Google Scholar] [CrossRef]
- Goeleven, D.; Mentagui, D. Well-posed hemivariational inequalities. Numer. Funct. Anal. Optim. 1995, 16, 909–921. [Google Scholar] [CrossRef]
- Xiao, Y.B.; Huang, N.J. Well-posedness for a class of variational-hemivariational inequalities with perturbations. J. Optim. Theory Appl. 2011, 151, 33–51. [Google Scholar] [CrossRef]
- Xiao, Y.B.; Yang, X.M.; Huang, N.J. Some equivalence results for well-posedness of hemivariational inequalities. J. Glob. Optim. 2015, 61, 789–802. [Google Scholar] [CrossRef]
- Hu, R.; Xiao, Y.B.; Huang, N.J.; Wang, X. Equivalence results of well-posedness for split variational-hemivariational inequalities. J. Nonlinear Convex Anal. 2019, 20, 447–459. [Google Scholar]
- Bai, Y.; Migórski, S.; Zeng, S. Well-posedness of a class of generalized mixed hemivariational-variational inequalities. Nonlinear Anal. Real World Appl. 2019, 48, 424–444. [Google Scholar] [CrossRef]
- Migórski, S.; Sofonea, M.; Zeng, S. Well-posedness of history-dependent sweeping processes. SIAM J. Math. Anal. 2019, 51, 1082–1107. [Google Scholar] [CrossRef]
- Zeng, S.; Vilches, E. Well-Posedness of History/State-Dependent Implicit Sweeping Processes. J. Optim. Theory. Appl. 2020, 186, 960–984. [Google Scholar] [CrossRef]
- Zeng, S.; Bai, Y.; Gasinsky, L.; Winkert, P. Existence results for double phase implicit obstacle problems involving multivalued operators. Calc. Var. Partial. Differ. Equ. 2020, 59, 176. [Google Scholar] [CrossRef]
- Treanţă, S. A necessary and sufficient condition of optimality for a class of multidimensional control problems. Optim. Control. Appl. Methods 2020, 41, 2137–2148. [Google Scholar] [CrossRef]
- S Treanţă, Şt. Mititelu, Efficiency for variational control problems on Riemann manifolds with geodesic quasiinvex curvilinear integral functionals. Rev. Real Acad. Cienc. Exactas, FíSicas Nat. Ser. A MatemáTicas 2020, 14, 113. [Google Scholar]
- Treanţă, S. Well-posedness of new optimization problems with variational inequality constraints. Fractal Fract. 2021, 5, 123. [Google Scholar] [CrossRef]
- Treanţă, S. On a modified optimal control problem with first-order PDE constraints and the associated saddle-point optimality criterion. Eur. J. Control. 2020, 51, 1–9. [Google Scholar] [CrossRef]
- Treanţă, S. Efficiency in generalized V-KT-pseudoinvex control problems. Int. J. Control. 2020, 93, 611–618. [Google Scholar] [CrossRef]
- Treanţă, S. On well-posedness associated with a class of controlled variational inequalities. Math. Model. Nat. Phenom. 2021, 16, 52. [Google Scholar] [CrossRef]
- Treanţă, S. Some results on (ρ,b,d)-variational inequalities. J. Math. Inequalities 2020, 14, 805–818. [Google Scholar] [CrossRef]
- Treanţă, S. On weak sharp solutions in (ρ,b,d)-variational inequalities. J. Inequalities Appl. 2020, 2020, 54. [Google Scholar] [CrossRef] [Green Version]
- Treanţă, S. On well-posed isoperimetric-type constrained variational control problems. J. Differ. Equ. 2021, 298, 480–499. [Google Scholar] [CrossRef]
- Usman, F.; Khan, S.A. A generalized mixed vector variational-like inequality problem. Nonlinear Anal. 2009, 71, 5354–5362. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Treanţă, S. Well-Posedness Results of Certain Variational Inequalities. Mathematics 2022, 10, 3809. https://doi.org/10.3390/math10203809
Treanţă S. Well-Posedness Results of Certain Variational Inequalities. Mathematics. 2022; 10(20):3809. https://doi.org/10.3390/math10203809
Chicago/Turabian StyleTreanţă, Savin. 2022. "Well-Posedness Results of Certain Variational Inequalities" Mathematics 10, no. 20: 3809. https://doi.org/10.3390/math10203809
APA StyleTreanţă, S. (2022). Well-Posedness Results of Certain Variational Inequalities. Mathematics, 10(20), 3809. https://doi.org/10.3390/math10203809