Economic Performance and Stock Market Integration in BRICS and G7 Countries: An Application with Quantile Panel Data and Random Coefficients Modeling
Abstract
:1. Introduction
2. Literature Review
- (1)
- Neves and Leal [26] verified a positive relationship between the SMB and HML risk factors and the future economic growth of Brazil for the period from 1986 to 2001.
- (2)
- Font-Belaire and Grau-Grau [27] provided evidence on the positive and statistically significant relationship between future GDP growth and the SMB risk factor of the Spanish market during the period from 1995 to 2000.
- (3)
- Hanhardt and Ansotegui [28] used data from 1990 to 2008 and found that the SMB risk factor has an explanatory capacity for the future economic growth of the Euro Zone.
- (4)
- Fajardo and Fialho [29], using Brazilian market data from 1995 to 2008, observed that the risk factor SMB and HML are positively related to economic growth and negatively related to inflation.
- (5)
- Liu and Di Iorio [30] provided evidence of the explanatory power of SMB and HML risk factors in predicting future Australian economic growth for the period 1993 to 2010.
- (6)
- (7)
- Ali, He and Jiang [32] reported that the MKT and SMB risk factors help to predict the future economic growth of Pakistan in the period 2002 to 2016.
Economic Performance and Stock Market’s Integration
3. Methodology
Hypothesis
- (1)
- First explores the relationship between the global risk factors MKT, SMB, HML, RMW and CMA, as well as the three elementary risk factors (SMBB/M, SMBOP and SMBINV) of the SMB, considered in the five-factor model by Fama and French (2015) and the future economic performance of the BRICS and G7 countries.
- (2)
- In the second moment, this study analyses (i) if there are significant differences, over the years, in the economic performance of the G7 and BRICS countries, as well as (ii) if these differences can be explained by the global risk factors of the model developed by [14].
4. Data
4.1. Sample
4.2. Univariate Analysis
5. Multivariate Analysis
5.1. Quantile Regression Analysis
5.2. Random Coefficients Modeling
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Model | OLS | Quantile Regression | ||||||
---|---|---|---|---|---|---|---|---|
0.05 | 0.25 | 0.50 | 0.75 | 0.95 | ||||
Panel A: | ||||||||
Brazil | ||||||||
1 | SMBB/M | Coef | 0.045 | −0.215 ** | −0.044 *** | 0.084 | 0.040 | 0.061 |
SE | 0.048 | 0.075 | 0.015 | 0.058 | 0.062 | 0.046 | ||
2 | SMBOP | Coef | 0.071 ** | −0.269 *** | 0.071 | 0.082 | 0.033 | 0.073 |
SE | 0.034 | 0.018 | 0.066 | 0.050 | 0.058 | 0.055 | ||
3 | SMBINV | Coef | 0.057 ** | −0.274 *** | 0.076 | 0.047 | 0.025 | 0.069 ** |
SE | 0.021 | 0.020 | 0.050 | 0.050 | 0.049 | 0.032 | ||
Canada | ||||||||
1 | SMBB/M | Coef | 0.075 | 0.296 ** | 0.099 *** | 0.065 | 0.056 | −0.111 *** |
SE | 0.049 | 0.104 | 0.023 | 0.043 | 0.067 | 0.010 | ||
2 | SMBOP | Coef | 0.062 | 0.294 ** | 0.096 *** | 0.066 ** | 0.037 | −0.114 ** |
SE | 0.049 | 0.142 | 0.027 | 0.027 | 0.030 | 0.049 | ||
3 | SMBINV | Coef | 0.064 | 0.275 * | 0.089 ** | 0.110 *** | 0.040 | −0.081 * |
SE | 0.049 | 0.163 | 0.031 | 0.027 | 0.050 | 0.044 | ||
China | ||||||||
1 | SMBB/M | Coef | 0.060 * | 0.054 *** | 0.044 | 0.107 ** | 0.072 | 0.009 |
SE | 0.032 | 0.013 | 0.033 | 0.038 | 0.045 | 0.113 | ||
2 | SMBOP | Coef | 0.075 *** | 0.060 *** | 0.113 ** | 0.098 *** | 0.058 | 0.007 |
SE | 0.019 | 0.014 | 0.050 | 0.031 | 0.042 | 0.108 | ||
3 | SMBINV | Coef | 0.066 *** | 0.059 *** | 0.086 *** | 0.066 ** | 0.050 | 0.005 |
SE | 0.011 | 0.019 | 0.027 | 0.028 | 0.036 | 0.069 | ||
France | ||||||||
1 | SMBB/M | Coef | 0.016 | 0.122 *** | 0.089 *** | 0.041 * | 0.002 | 0.011 |
SE | 0.035 | 0.015 | 0.006 | 0.023 | 0.014 | 0.043 | ||
2 | SMBOP | Coef | 0.048 | 0.213 *** | 0.064 ** | 0.030 | −0.016 | −0.021 |
SE | 0.036 | 0.051 | 0.026 | 0.022 | 0.022 | 0.052 | ||
3 | SMBINV | Coef | 0.005 | 0.034 *** | 0.073 *** | 0.041 ** | −0.015 | −0.019 |
SE | 0.035 | 0.004 | 0.014 | 0.015 | 0.018 | 0.054 | ||
Germany | ||||||||
1 | SMBB/M | Coef | 0.043 | 0.116 *** | 0.023 | 0.060 * | 0.034 | 0.076 *** |
SE | 0.044 | 0.039 | 0.032 | 0.033 | 0.029 | 0.004 | ||
2 | SMBOP | Coef | 0.026 | 0.202 *** | −0.005 | −0.018 | 0.031 | 0.077 *** |
SE | 0.043 | 0.057 | 0.042 | 0.040 | 0.041 | 0.007 | ||
3 | SMBINV | Coef | 0.039 | 0.057 | 0.029 | 0.023 | 0.025 | 0.078 *** |
SE | 0.029 | 0.036 | 0.021 | 0.017 | 0.024 | 0.019 | ||
India | ||||||||
1 | SMBB/M | Coef | 0.018 | 0.014 | 0.039 | 0.031 | 0.033 *** | 0.039 ** |
SE | 0.034 | 0.061 | 0.063 | 0.025 | 0.005 | 0.016 | ||
2 | SMBOP | Coef | 0.010 | 0.030 | 0.038 | −0.017 | 0.030 *** | 0.076 *** |
SE | 0.033 | 0.060 | 0.085 | 0.019 | 0.008 | 0.013 | ||
3 | SMBINV | Coef | 0.016 | 0.023 | 0.026 | −0.013 | 0.029 *** | 0.077 *** |
SE | 0.026 | 0.048 | 0.056 | 0.014 | 0.005 | 0.005 | ||
Italy | ||||||||
1 | SMBB/M | Coef | 0.045 | 0.167 *** | 0.073 *** | 0.007 | −0.001 | 0.064 ** |
SE | 0.034 | 0.054 | 0.019 | 0.035 | 0.018 | 0.025 | ||
2 | SMBOP | Coef | 0.034 | 0.175 *** | 0.071 ** | 0.007 | −0.001 | −0.066 *** |
SE | 0.035 | 0.031 | 0.026 | 0.038 | 0.013 | 0.013 | ||
3 | SMBINV | Coef | 0.033 | 0.150 *** | 0.064 * | 0.006 | −0.001 | 0.064 ** |
SE | 0.033 | 0.045 | 0.036 | 0.032 | 0.018 | 0.028 | ||
Japan | ||||||||
1 | SMBB/M | Coef | 0.078 * | 0.049 * | 0.079 ** | 0.062 ** | 0.070 ** | 0.088 ** |
SE | 0.039 | 0.025 | 0.034 | 0.024 | 0.027 | 0.031 | ||
2 | SMBOP | Coef | 0.066 | 0.224 *** | 0.085 *** | 0.059 * | 0.022 | 0.074 *** |
SE | 0.039 | 0.047 | 0.015 | 0.034 | 0.027 | 0.026 | ||
3 | SMBINV | Coef | 0.064 | 0.053 | 0.081 *** | 0.054 | 0.057 | 0.088 *** |
SE | 0.039 | 0.035 | 0.016 | 0.033 | 0.059 | 0.025 | ||
Russia | ||||||||
1 | SMBB/M | Coef | −0.234 ** | −0.185 | −0.360 ** | −0.316 * | −0.094 | −0.284 *** |
SE | 0.104 | 0.193 | 0.134 | 0.160 | 0.109 | 0.012 | ||
2 | SMBOP | Coef | −0.179 | −0.169 | −0.320 *** | −0.145 | −0.102 | −0.225 *** |
SE | 0.105 | 0.163 | 0.132 | 0.137 | 0.102 | 0.026 | ||
3 | SMBINV | Coef | −0.191 ** | −0.133 | −0.240 ** | −0.137 | −0.106 | −0.152 *** |
SE | 0.078 | 0.124 | 0.084 | 0.095 | 0.066 | 0.026 | ||
South Africa | ||||||||
1 | SMBB/M | Coef | 0.010 | 0.105 * | 0.053 | 0.012 | −0.026 | 0.019 |
SE | 0.026 | 0.063 | 0.046 | 0.032 | 0.035 | 0.023 | ||
2 | SMBOP | Coef | 0.026 | 0.080 | 0.047 | 0.011 | −0.022 | −0.050 |
SE | 0.023 | 0.071 | 0.062 | 0.033 | 0.040 | 0.051 | ||
3 | SMBINV | Coef | 0.016 | 0.056 ** | 0.036 | 0.008 | −0.015 | 0.082 *** |
SE | 0.015 | 0.021 | 0.053 | 0.026 | 0.030 | 0.010 | ||
United Kingdom | ||||||||
1 | SMBB/M | Coef | 0.012 | 0.090 *** | 0.030 | −0.002 | −0.009 | −0.001 |
SE | 0.032 | 0.027 | 0.040 | 0.026 | 0.046 | 0.013 | ||
2 | SMBOP | Coef | 0.022 | 0.089 *** | 0.031** | −0.002 | −0.008 | 0.008 |
SE | 0.035 | 0.018 | 0.011 | 0.019 | 0.038 | 0.010 | ||
3 | SMBINV | Coef | 0.015 | 0.082 ** | 0.029 | −0.002 | −0.020 | 0.007 |
SE | 0.033 | 0.034 | 0.023 | 0.027 | 0.028 | 0.024 | ||
United States | ||||||||
1 | SMBB/M | Coef | 0.012 | 0.084 *** | 0.056 ** | 0.051 *** | −0.022 | −0.021 *** |
SE | 0.043 | 0.015 | 0.024 | 0.016 | 0.018 | 0.005 | ||
2 | SMBOP | Coef | 0.001 | 0.214 *** | −0.009 | 0.031 | −0.035 | −0.024 ** |
SE | 0.045 | 0.023 | 0.022 | 0.033 | 0.045 | 0.011 | ||
3 | SMBINV | Coef | −0.001 | 0.089 ** | −0.011 | 0.041 | −0.035 | −0.022 *** |
SE | 0.044 | 0.035 | 0.040 | 0.030 | 0.043 | 0.006 | ||
Panel B: | ||||||||
Brazil | ||||||||
4 | MKT | Coef | 0.052 *** | 0.121 *** | 0.050 *** | 0.048 *** | 0.051 *** | 0.033 *** |
SE | 0.010 | 0.018 | 0.010 | 0.010 | 0.005 | 0.004 | ||
SMBB/M | Coef | −0.021 | −0.053 | −0.011 | −0.038 | 0.010 | −0.023 | |
SE | 0.034 | 0.064 | 0.037 | 0.036 | 0.017 | 0.027 | ||
5 | MKT | Coef | 0.053 *** | 0.124 *** | 0.050 *** | 0.048 *** | 0.050 *** | 0.036 ** |
SE | 0.011 | 0.022 | 0.009 | 0.011 | 0.005 | 0.013 | ||
SMBOP | Coef | −0.021 | −0.050 | −0.010 | −0.031 | 0.013 | −0.029 | |
SE | 0.032 | 0.076 | 0.032 | 0.031 | 0.018 | 0.046 | ||
6 | MKT | Coef | 0.052 *** | 0.095 *** | 0.049 *** | 0.047 *** | 0.050 *** | 0.035 ** |
SE | 0.010 | 0.013 | 0.009 | 0.009 | 0.008 | 0.012 | ||
SMBINV | Coef | −0.011 | −0.015 | −0.006 | −0.023 | 0.013 | −0.030 | |
SE | 0.020 | 0.036 | 0.025 | 0.026 | 0.021 | 0.034 | ||
Canada | ||||||||
4 | MKT | Coef | 0.051 ** | 0.072 *** | 0.063 *** | 0.020 | 0.021 ** | 0.049 *** |
SE | 0.024 | 0.010 | 0.011 | 0.021 | 0.009 | 0.003 | ||
SMBB/M | Coef | 0.037 | 0.050 ** | 0.031 | 0.052 | 0.056 ** | −0.133 *** | |
SE | 0.049 | 0.021 | 0.023 | 0.044 | 0.019 | 0.005 | ||
5 | MKT | Coef | 0.054 ** | 0.073 *** | 0.061 *** | 0.018 | 0.031 | 0.033 ** |
SE | 0.023 | 0.009 | 0.007 | 0.015 | 0.024 | 0.011 | ||
SMBOP | Coef | 0.045 | 0.046 ** | 0.034 ** | 0.054 * | 0.058 | −0.115 *** | |
SE | 0.046 | 0.018 | 0.014 | 0.031 | 0.049 | 0.023 | ||
6 | MKT | Coef | 0.054 ** | 0.075 *** | 0.057 *** | 0.017 | 0.029 | 0.040 *** |
SE | 0.046 | 0.008 | 0.019 | 0.018 | 0.027 | 0.009 | ||
SMBINV | Coef | 0.043 | 0.039 ** | 0.033 | 0.058 | 0.059 | −0.124 *** | |
SE | 0.046 | 0.017 | 0.039 | 0.037 | 0.056 | 0.019 | ||
China | ||||||||
4 | MKT | Coef | 0.021 ** | 0.032 *** | 0.021 *** | 0.026 | 0.010 | 0.052 *** |
SE | 0.009 | 0.003 | 0.007 | 0.018 | 0.019 | 0.013 | ||
SMBB/M | Coef | 0.034 | 0.085 *** | 0.094 *** | 0.026 | 0.048 | −0.111 ** | |
SE | 0.031 | 0.010 | 0.024 | 0.063 | 0.067 | 0.046 | ||
5 | MKT | Coef | 0.018 * | 0.027 *** | 0.021 ** | 0.005 | 0.012 | 0.057 *** |
SE | 0.010 | 0.001 | 0.009 | 0.010 | 0.024 | 0.013 | ||
SMBOP | Coef | 0.044 | 0.087 *** | 0.086 *** | 0.089 ** | 0.033 | −0.104 ** | |
SE | 0.032 | 0.003 | 0.030 | 0.034 | 0.083 | 0.045 | ||
6 | MKT | Coef | 0.016 * | 0.023 *** | 0.026 *** | 0.012 | 0.006 | 0.057 *** |
SE | 0.009 | 0.003 | 0.005 | 0.008 | 0.017 | 0.006 | ||
SMBINV | Coef | 0.045 ** | 0.068 *** | 0.054 *** | 0.055 ** | 0.039 | −0.079 *** | |
SE | 0.018 | 0.007 | 0.013 | 0.022 | 0.047 | 0.017 | ||
France | ||||||||
4 | MKT | Coef | 0.049 ** | 0.051 *** | 0.015 | 0.035 *** | 0.041 *** | 0.050 *** |
SE | 0.018 | 0.014 | 0.010 | 0.011 | 0.008 | 0.011 | ||
SMBB/M | Coef | −0.020 | 0.074 ** | 0.066 *** | −0.012 | −0.038 ** | −0.016 | |
SE | 0.026 | 0.028 | 0.020 | 0.023 | 0.017 | 0.023 | ||
5 | MKT | Coef | 0.046 *** | 0.051 *** | 0.023 * | 0.035 *** | 0.036 *** | 0.042 *** |
SE | 0.016 | 0.003 | 0.012 | 0.011 | 0.005 | 0.004 | ||
SMBOP | Coef | −0.010 | 0.072 *** | 0.049 * | −0.013 | −0.034 *** | −0.021 ** | |
SE | 0.027 | 0.006 | 0.024 | 0.022 | 0.011 | 0.009 | ||
6 | MKT | Coef | 0.047 *** | 0.053 *** | 0.024 * | 0.035 *** | 0.038 *** | 0.043 *** |
SE | 0.017 | 0.011 | 0.013 | 0.012 | 0.007 | 0.004 | ||
SMBINV | Coef | −0.014 | 0.064 *** | 0.048 * | −0.012 | −0.033 ** | −0.021 ** | |
SE | 0.026 | 0.021 | 0.026 | 0.024 | 0.014 | 0.009 | ||
Germany | ||||||||
4 | MKT | Coef | 0.076 *** | 0.106 *** | 0.047 *** | 0.068 *** | 0.056 ** | 0.044 *** |
SE | 0.026 | 0.008 | 0.014 | 0.006 | 0.024 | 0.013 | ||
SMBB/M | Coef | −0.013 | −0.057 *** | −0.044 | −0.012 | 0.030 | 0.074 ** | |
SE | 0.029 | 0.017 | 0.029 | 0.013 | 0.049 | 0.026 | ||
5 | MKT | Coef | 0.070 *** | 0.107 *** | 0.041 *** | 0.066 *** | 0.046 *** | 0.069 *** |
SE | 0.024 | 0.010 | 0.008 | 0.012 | 0.007 | 0.008 | ||
SMBOP | Coef | 0.033 | −0.058 *** | −0.040 ** | −0.009 | 0.052 *** | 0.077 *** | |
SE | 0.023 | 0.019 | 0.017 | 0.023 | 0.015 | 0.015 | ||
6 | MKT | Coef | 0.075 *** | 0.106 *** | 0.043 *** | 0.067 *** | 0.050 *** | 0.066 *** |
SE | 0.025 | 0.012 | 0.011 | 0.016 | 0.012 | 0.003 | ||
SMBINV | Coef | −0.008 | −0.053 ** | −0.035 | −0.010 | 0.039 | 0.077 *** | |
SE | 0.029 | 0.024 | 0.022 | 0.033 | 0.024 | 0.007 | ||
India | ||||||||
4 | MKT | Coef | −0.003 | −0.016 *** | −0.002 | −0.011 | 0.001 | −0.004 |
SE | 0.010 | 0.004 | 0.031 | 0.008 | 0.001 | 0.004 | ||
SMBB/M | Coef | 0.022 | 0.024 | 0.049 | 0.021 | 0.031 *** | 0.024 * | |
SE | 0.037 | 0.015 | 0.113 | 0.031 | 0.009 | 0.013 | ||
5 | MKT | Coef | −0.002 | −0.018 *** | 0.013 | −0.012 | 0.001 | −0.006 * |
SE | 0.011 | 0.005 | 0.016 | 0.012 | 0.005 | 0.003 | ||
SMBOP | Coef | 0.014 | −0.020 | −0.046 | 0.011 | 0.028 | 0.031 ** | |
SE | 0.039 | 0.016 | 0.057 | 0.043 | 0.018 | 0.011 | ||
6 | MKT | Coef | −0.004 | −0.014 | −0.016 | −0.012 | −0.001 | −0.007 * |
SE | 0.011 | 0.011 | 0.026 | 0.012 | 0.002 | 0.003 | ||
SMBINV | Coef | 0.022 | 0.037 | 0.046 | 0.009 | 0.031 *** | 0.030 *** | |
SE | 0.029 | 0.031 | 0.072 | 0.033 | 0.006 | 0.009 | ||
Italy | ||||||||
4 | MKT | Coef | 0.053 ** | 0.062 *** | 0.030 ** | 0.031 ** | 0.045 *** | 0.002 |
SE | 0.027 | 0.019 | 0.011 | 0.014 | 0.014 | 0.018 | ||
SMBB/M | Coef | 0.006 | 0.087 ** | 0.005 | −0.019 | −0.005 | 0.063 * | |
SE | 0.027 | 0.038 | 0.023 | 0.029 | 0.029 | 0.037 | ||
5 | MKT | Coef | 0.053 * | 0.061 *** | 0.019 | 0.031 ** | 0.035 ** | 0.040 * |
SE | 0.025 | 0.018 | 0.012 | 0.012 | 0.013 | 0.021 | ||
SMBOP | Coef | 0.017 | 0.090 ** | 0.056 ** | −0.014 | −0.001 | −0.013 | |
SE | 0.027 | 0.036 | 0.024 | 0.024 | 0.026 | 0.042 | ||
6 | MKT | Coef | 0.053 ** | 0.061 *** | 0.029 ** | 0.031 ** | 0.035 *** | 0.041 * |
SE | 0.025 | 0.020 | 0.010 | 0.012 | 0.012 | 0.020 | ||
SMBINV | Coef | 0.011 | 0.082 * | 0.004 | −0.015 | −0.001 | −0.027 | |
SE | 0.026 | 0.040 | 0.021 | 0.024 | 0.023 | 0.041 | ||
Japan | ||||||||
4 | MKT | Coef | 0.051 * | 0.081 *** | 0.013 | 0.021 | 0.029 * | 0.050 *** |
SE | 0.028 | 0.018 | 0.022 | 0.015 | 0.014 | 0.008 | ||
SMBB/M | Coef | 0.040 | 0.060 | 0.074 | 0.033 | 0.074 ** | 0.010 | |
SE | 0.031 | 0.038 | 0.045 | 0.031 | 0.029 | 0.016 | ||
5 | MKT | Coef | 0.054 ** | 0.081 *** | 0.023 * | 0.036 *** | 0.040 | 0.052 *** |
SE | 0.025 | 0.004 | 0.013 | 0.016 | 0.025 | 0.014 | ||
SMBOP | Coef | 0.048 * | 0.059 *** | 0.075 ** | 0.001 | 0.059 | 0.007 | |
SE | 0.026 | 0.008 | 0.026 | 0.032 | 0.051 | 0.028 | ||
6 | MKT | Coef | 0.054 ** | 0.082 *** | 0.017 *** | 0.035 *** | 0.034 *** | 0.041 *** |
SE | 0.026 | 0.007 | 0.003 | 0.006 | 0.005 | 0.011 | ||
SMBINV | Coef | 0.042 | 0.052 *** | 0.072 *** | 0.001 | 0.067 *** | 0.024 | |
SE | 0.028 | 0.014 | 0.006 | 0.012 | 0.011 | 0.022 | ||
Russia | ||||||||
4 | MKT | Coef | 0.057 * | 0.129 *** | 0.110 *** | 0.055 ** | 0.035 | 0.037 *** |
SE | 0.031 | 0.038 | 0.026 | 0.026 | 0.025 | 0.003 | ||
SMBB/M | Coef | −0.306 ** | −0.504 *** | −0.204 ** | −0.148 | −0.250 ** | −0.017 | |
SE | 0.141 | 0.139 | 0.092 | 0.092 | 0.089 | 0.012 | ||
5 | MKT | Coef | 0.070 ** | 0.125 *** | 0.137 ** | 0.079 * | 0.023 | 0.046 ** |
SE | 0.031 | 0.003 | 0.054 | 0.045 | 0.017 | 0.017 | ||
SMBOP | Coef | −0.302 * | −0.449 *** | −0.277 | −0.129 | −0.171 *** | 0.100 * | |
SE | 0.152 | 0.009 | 0.189 | 0.159 | 0.058 | 0.059 | ||
6 | MKT | Coef | 0.078 ** | 0.127 *** | 0.125 *** | 0.072 *** | 0.039 ** | 0.027 |
SE | 0.029 | 0.013 | 0.042 | 0.025 | 0.016 | 0.021 | ||
SMBINV | Coef | −0.294 *** | −0.338 *** | −0.404 *** | −0.209 *** | −0.231 *** | −0.120 * | |
SE | 0.079 | 0.037 | 0.115 | 0.068 | 0.045 | 0.059 | ||
South Africa | ||||||||
4 | MKT | Coef | 0.028 *** | 0.027 *** | 0.035 ** | 0.018 * | 0.024 * | 0.040 *** |
SE | 0.009 | 0.004 | 0.016 | 0.009 | 0.015 | 0.003 | ||
SMBB/M | Coef | −0.025 | 0.021 | −0.025 | −0.038 | −0.075 | −0.106 *** | |
SE | 0.029 | 0.016 | 0.059 | 0.032 | 0.052 | 0.012 | ||
5 | MKT | Coef | 0.029 *** | 0.027 *** | 0.030 *** | 0.019 * | 0.038 *** | 0.042 *** |
SE | 0.010 | 0.005 | 0.007 | 0.011 | 0.005 | 0.004 | ||
SMBOP | Coef | −0.024 | 0.020 | −0.011 | −0.035 | −0.098 *** | −0.065 *** | |
SE | 0.034 | 0.019 | 0.024 | 0.038 | 0.018 | 0.013 | ||
6 | MKT | Coef | 0.029 *** | 0.027 *** | 0.044 *** | 0.019 * | 0.035 *** | 0.049 *** |
SE | 0.009 | 0.006 | 0.010 | 0.010 | 0.012 | 0.002 | ||
SMBINV | Coef | −0.023 | 0.015 | −0.033 | −0.023 | −0.065 * | −0.082 *** | |
SE | 0.021 | 0.016 | 0.029 | 0.029 | 0.032 | 0.006 | ||
United Kingdom | ||||||||
4 | MKT | Coef | 0.047 | 0.085 *** | 0.040 ** | 0.011 | 0.010 | 0.016 * |
SE | 0.031 | 0.001 | 0.014 | 0.014 | 0.020 | 0.009 | ||
MBB/M | Coef | −0.022 | −0.002 | −0.043 | −0.016 | −0.009 | −0.017 | |
SE | 0.027 | 0.001 | 0.029 | 0.029 | 0.042 | 0.018 | ||
5 | MKT | Coef | 0.042 | 0.085 *** | 0.029 *** | 0.007 | 0.007 | 0.014 ** |
SE | 0.029 | 0.000 | 0.005 | 0.016 | 0.013 | 0.006 | ||
SMBOP | Coef | 0.008 | −0.001 | −0.014 | 0.008 | −0.008 | 0.002 | |
SE | 0.031 | 0.001 | 0.009 | 0.033 | 0.027 | 0.012 | ||
6 | MKT | Coef | 0.043 | 0.085 *** | 0.030 *** | 0.002 | 0.008 | 0.014 |
SE | 0.030 | 0.002 | 0.005 | 0.014 | 0.013 | 0.009 | ||
SMBINV | Coef | −0.003 | −0.002 | −0.014 | −0.003 | −0.008 | 0.002 | |
SE | 0.029 | 0.005 | 0.009 | 0.028 | 0.027 | 0.018 | ||
United States | ||||||||
4 | MKT | Coef | 0.057 *** | 0.058 *** | 0.031 | 0.052 *** | 0.055 *** | 0.040 *** |
SE | 0.018 | 0.017 | 0.025 | 0.021 | 0.014 | 0.002 | ||
MBB/M | Coef | −0.030 | 0.058 * | 0.008 | −0.033 | −0.047 | −0.069 *** | |
SE | 0.035 | 0.035 | 0.052 | 0.044 | 0.029 | 0.005 | ||
5 | MKT | Coef | 0.053 *** | 0.059 *** | 0.035 *** | 0.053 *** | 0.044 *** | 0.029 *** |
SE | 0.017 | 0.010 | 0.006 | 0.011 | 0.014 | 0.006 | ||
SMBOP | Coef | −0.017 | 0.058 *** | 0.041 *** | −0.034 | −0.047 | −0.029 ** | |
SE | 0.036 | 0.019 | 0.011 | 0.022 | 0.028 | 0.013 | ||
6 | MKT | Coef | 0.054 *** | 0.061 *** | 0.033 | 0.052 *** | 0.048 *** | 0.031 *** |
SE | 0.017 | 0.015 | 0.020 | 0.018 | 0.006 | 0.007 | ||
SMBINV | Coef | −0.023 | 0.061 * | 0.044 | −0.028 | −0.045 *** | −0.029 ** | |
SE | 0.034 | 0.031 | 0.041 | 0.036 | 0.012 | 0.013 |
Appendix B
Model | Fixed Effect | Random Effect | Pooled OLS | Fixed Effect AR(1) | Random Effect AR(1) | Pooled OLS AR(1) | GLS AR(1) | ||
---|---|---|---|---|---|---|---|---|---|
6 | MKT | Coef | 0.04051 *** | 0.04048 *** | 0.03990 *** | 0.03094 *** | 0.03137 *** | 0.03029 *** | 0.02637 *** |
SE | 0.00597 | 0.00602 | 0.00849 | 0.00413 | 0.00451 | 0.00676 | 0.00393 | ||
SMB | Coef | −0.00548 | −0.00605 | −0.01693 | 0.01129 | 0.00311 | 0.00427 | 0.00358 | |
SE | 0.01642 | 0.01654 | 0.02328 | 0.01546 | 0.01637 | 0.02512 | 0.01441 | ||
HML | Coef | 0.02024 * | 0.02115 * | 0.03849 ** | 0.00587 | 0.00429 | 0.00501 | −0.00154 | |
SE | 0.01183 | 0.01191 | 0.01662 | 0.00925 | 0.01003 | 0.01518 | 0.00927 | ||
RMW | Coef | 0.05789 *** | 0.05683 *** | 0.03655 | 0.02665 | 0.04323 ** | 0.03629 | 0.02464 * | |
SE | 0.01946 | 0.01960 | 0.02750 | 0.01726 | 0.01697 | 0.02547 | 0.01484 | ||
CMA | Coef | −0.01730 | −0.01728 | −0.01691 | −0.02660 *** | −0.02651 ** | −0.02744 | −0.02289 ** | |
SE | 0.01586 | 0.01597 | 0.02254 | 0.01164 | 0.01274 | 0.01878 | 0.01036 | ||
Cons | Coef | 0.02260 *** | 0.02259 *** | 0.02232 *** | 0.02558 *** | 0.02479 *** | 0.02488 *** | 0.02597 *** | |
SE | 0.00178 | 0.00588 | 0.00253 | 0.00119 | 0.00666 | 0.00434 | 0.00295 |
References
- Bekaert, G.; Harvey, C.R. Emerging Markets Finance. J. Empir. Financ. 2003, 10, 3–55. [Google Scholar] [CrossRef]
- Tripathi, V.; Seth, R. Stock Market Performance and Macroeconomic Factors: The Study of Indian Equity Market. Glob. Bus. Rev. 2014, 15, 291–316. [Google Scholar] [CrossRef]
- Saji, T.G. Asian Stock Market Integration after the Global Financial Crisis: An ARDL Bound Testing Approach. Manag. Financ. 2021, 47, 1651–1671. [Google Scholar] [CrossRef]
- Nardo, M.; Ossola, E.; Papanagiotou, E. Financial Integration in the EU28 Equity Markets: Measures and Drivers. J. Financ. Mark. 2022, 57, 100633. [Google Scholar] [CrossRef]
- Fama, E.F.; French, K.R. Value versus Growth: The International Evidence. J. Financ. 1998, 53, 1975–1999. [Google Scholar] [CrossRef]
- Fama, E.F.; French, K.R. Size, Value, and Momentum in International Stock Returns. J. Financ. Econ. 2012, 105, 457–472. [Google Scholar] [CrossRef]
- Fama, E.F.; French, K.R. International Tests of a Five-Factor Asset Pricing Model. J. Financ. Econ. 2017, 123, 441–463. [Google Scholar] [CrossRef]
- Cakici, N. The Five-Factor Fama-French Model: International Evidence. Available online: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2601662 (accessed on 1 September 2020).
- Cakici, N.; Fabozzi, F.J.; Tan, S. Size, Value, and Momentum in Emerging Market Stock Returns. Emerg. Mark. Rev. 2013, 16, 46–65. [Google Scholar] [CrossRef]
- Leite, A.L.; Klotzle, M.C.; Pinto, A.C.F.; da Silva, A.F. Size, Value, Profitability, and Investment: Evidence from Emerging Markets. Emerg. Mark. Rev. 2018, 36, 45–59. [Google Scholar] [CrossRef]
- Hanauer, M.X.; Lauterbach, J.G. The Cross-Section of Emerging Market Stock Returns. Emerg. Mark. Rev. 2019, 38, 265–286. [Google Scholar] [CrossRef]
- Tenorio, F.M.; Dos Santos, M.; Gomes, C.F.S.; Araujo, J.D.C.; De Almeida, G.P. THOR 2 Method: An Efficient Instrument in Situations Where There Is Uncertainty or Lack of Data. IEEE Access 2021, 9, 161794–161805. [Google Scholar] [CrossRef]
- Fama, E.F.; French, K.R. Common Risk Factors in the Returns on Stocks and Bonds. J. Financ. Econ. 1993, 33, 3–56. [Google Scholar] [CrossRef]
- Fama, E.F.; French, K.R. A Five-Factor Asset Pricing Model. J. Financ. Econ. 2015, 116, 1–22. [Google Scholar] [CrossRef] [Green Version]
- Merton, R.C. An Intertemporal Capital Asset Pricing Model. Econometrica 1973, 41, 867–887. [Google Scholar] [CrossRef]
- Fama, E.F.; French, K.R. The Capital Asset Pricing Model: Theory and Evidence. J. Econ. Perspect. 2004, 18, 25–46. [Google Scholar] [CrossRef] [Green Version]
- Fama, E.F. Stock Returns, Real Activity, Inflation, and Money. Am. Econ. Rev. 1981, 71, 545–565. [Google Scholar]
- Aylward, A.; Glen, J. Some International Evidence on Stock Prices as Leading Indicators of Economic Activity. Appl. Financ. Econ. 2000, 10, 1–14. [Google Scholar] [CrossRef]
- Liew, J.; Vassalou, M. Can Book-to-Market, Size and Momentum Be Risk Factors That Predict Economic Growth? J. Financ. Econ. 2000, 57, 221–245. [Google Scholar] [CrossRef]
- Chan, K.C.; Chen, N. Structural and Return Characteristics of Small and Large Firms. J. Financ. 1991, 46, 1467–1484. [Google Scholar] [CrossRef]
- Burmeister, E.; Roll, R.; Ross, S.A. Using Macroeconomic Factors to Control Portfolio Risk. Pract. Guide Factor Model. 2003, 9, 1–27. [Google Scholar]
- Kassimatis, K. Size, Book to Market and Momentum Effects in the Australian Stock Market. Aust. J. Manag. 2008, 33, 145–168. [Google Scholar] [CrossRef]
- Brooks, R.; Del Negro, M. Country versus Region Effects in International Stock Returns. J. Portf. Manag. 2005, 31, 67–72. [Google Scholar] [CrossRef]
- Lehkonen, H. Stock Market Integration and the Global Financial Crisis. Rev. Financ. 2015, 19, 2039–2094. [Google Scholar] [CrossRef] [Green Version]
- Bibi, R. Sumaira the Effect of Financial Development on Economic Growth: Evidence from South Asian Developing Countries. J. Environ. Sci. Econ. 2022, 1, 1–17. [Google Scholar] [CrossRef]
- Das Neves, M.B.E.; Leal, R.P.C. Existe Relação Entre o Crescimento do PIB Brasileiro e os Efeitos Tamanho, Valor e Momento. Encontro Nac. ANPAD 2003, 17, 1–16. [Google Scholar]
- Font-Belaire, B.; Grau-Grau, A.J. Los Factores Tamaño, Book-to-Market y Momentum en el Mercado de Capitales Español: Explicaciones Racionales y Efecto en la Formación del Precio. Span. J. Financ. Account. Rev. Española Financ. Contab. 2007, 36, 509–535. [Google Scholar]
- Hanhardt, A.; Ansotegui Olcoz, C. Do the Fama and French Factors Proxy for State Variables That Predict Macroeconomic Growth in the Eurozone? Available online: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=1098225 (accessed on 11 October 2019).
- Fajardo, J.; Fialho, M.L. Fama-French Three Factors, Business Cycles and Inflation in Brazil. Available online: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=1969481 (accessed on 1 April 2022).
- Liu, B.; Di Iorio, A. Do the Asset Pricing Factors Predict Future Economy Growth? An Australian Study. Eur. Financ. Manag. Assoc. 2013, 1–33. Available online: http://ro.uow.edu.au/cgi/viewcontent.cgi?article=2046&context=buspapers (accessed on 28 August 2019).
- Boamah, N.A. Robustness of the Carhart Four-Factor and the Fama-French Three-Factor Models on the South African Stock Market. Rev. Account. Financ. 2015, 14, 413–430. [Google Scholar] [CrossRef]
- Ali, F.; He, R.; Jiang, Y. Size, Value and Business Cycle Variables. The Three-Factor Model and Future Economic Growth: Evidence from an Emerging Market. Economies 2018, 6, 14. [Google Scholar] [CrossRef] [Green Version]
- Lalwani, V.; Chakraborty, M. Asset Pricing Factors and Future Economic Growth. Econ. Lett. 2018, 168, 151–154. [Google Scholar] [CrossRef]
- Ferreira, J.C.J.; Gama, A.P.M. The Relationship between the Factors of Risk in Asset Evaluation Models and Future Economic Growth: Evidence from Three Regional Markets. J. Spat. Organ. Dyn. 2020, 8, 300–319. [Google Scholar]
- Ferreira, J.C.J.; Gama, A.P.M.; Fávero, L.P.; Costa, R. O Modelo de 5-Fatores de Fama-French e o Crescimento Econômico Futuro: Evidências em Mercados Emergentes. Rev. Contab. UFBA 2021, 15, e2101. [Google Scholar] [CrossRef]
- Sehgal, S.; Pandey, P.; Deisting, F. Stock Market Integration Dynamics and Its Determinants in the East Asian Economic Community Region. J. Quant. Econ. 2018, 16, 389–425. [Google Scholar] [CrossRef]
- Olubiyi, E.A. Economic Integration and Stock Market Development: Evidence from Nigeria. Int. Trade J. 2021, 1–24. [Google Scholar] [CrossRef]
- Chukwuma, O.V.; Ugwu, J.I.; Babalola, D.S. Application of Forensic Accounting in Predicting the Financial Performance Growth of MTN Mobile Communication in Nigeria. J. Environ. Sci. Econ. 2022, 1, 67–76. [Google Scholar] [CrossRef]
- Jamil, M.N.; Rasheed, A.; Mukhtar, Z. Corporate Social Responsibility Impacts Sustainable Organizational Growth (Firm Performance): An Empirical Analysis of Pakistan Stock Exchange-Listed Firms. J. Environ. Sci. Econ. 2022, 1, 25–29. [Google Scholar] [CrossRef]
- Abdelkafi, I.; Ben Romdhane, Y.; Loukil, S.; Zaarour, F. Covid-19 Impact on Latin and Asian Stock Markets. Manag. Financ. 2022. ahead-of-print. [Google Scholar] [CrossRef]
- Fávero, L.P.; Belfiore, P. Manual de Análise de Dados: Estatística e Modelagem Multivariada com Excel®, SPSS® e Stata®; Elsevier Brasil: Rio de Janeiro, Brazil, 2017; ISBN 8535285059. [Google Scholar]
- Fávero, L.P.; Belfiore, P.; da Silva, F.L.; Chan, B.L. Análise de Dados: Modelagem Multivariada Para Tomada de Decisões; Elsevier Brasil: Rio de Janeiro, Brazil, 2009. [Google Scholar]
- Hair Jr, J.F.; Fávero, L.P. Multilevel Modeling for Longitudinal Data: Concepts and Applications. RAUSP Manag. J. 2019, 54, 459–489. [Google Scholar] [CrossRef]
- Islam, N. Growth Empirics: A Panel Data Approach. Q. J. Econ. 1995, 110, 1127–1170. [Google Scholar] [CrossRef]
- Fávero, L.P.L. Dados em Painel em Contabilidade e Finanças: Teoria e Aplicação. BBR-Braz. Bus. Rev. 2013, 10, 131–156. [Google Scholar]
- Newey, W.K.; West, K.D. A Simple, Positive Semi-Definite, Heteroskedasticity and Autocorrelationconsistent Covariance Matrix. Econometrica 1987, 55, 703–708. [Google Scholar] [CrossRef]
- White, H. A Heteroskedasticity-Consistent Covariance Matrix Estimator and a Direct Test for Heteroskedasticity. Econom. J. Econom. Soc. 1980, 48, 817–838. [Google Scholar] [CrossRef]
Research Hypotheses | Methodology |
---|---|
H1: The global risk factors of [14] asset pricing model, individually or in association with each other, explain the variability in future economic growth in BRICS and G7 countries. | Quantile regression modeling for longitudinal repeated measures data Longitudinal models of simple and multiple regression, with five explanatory variables, the risk factors of [14] model |
H2: There is significant variability in the economic growth rates of BRICS and G7 countries over time. | Random coefficients modeling Null Model |
H3: There is significant variability in the economic growth rates of BRICS and G7 countries over time across countries. | |
H4: The economic growth rates of BRICS and G7 countries follow a linear trend over time, and there are differences in this trend between countries. | Random coefficients modeling Linear trend model with random intercept effects Linear trend model with random intercept and slope effects |
H5: The global risk factors of [14] asset pricing model help to explain the variability in the future economic growth rate over time. | Random coefficients modeling Full model—Linear trend model with random effects and interaction of explanatory variables at level 1, risk factors, from [14] model and the random effects of slope at level 2 in order to capture differences in rates of economic growth of each country |
H6: Elementary size-effect risk factors associated with market beta risk help to explain the variability in the rate of future economic growth over time. |
Variables | Variable Definition | Expected Signal | Reference |
---|---|---|---|
Dependent Variable | |||
Economic performance (GDP) | GDP growth rate | [19,26,27,28,29,30,31,32,33,34,35] | |
Independent Variables—Stock market risk factor | |||
Market beta risk factor (MKT) | Difference between the market portfolio rate of return and the risk-free rate | Positive | [19,26,27,28,29,30,31,32,33,34,35] |
Size B/M (SMBB/M) [13] | Difference between the returns of diversified portfolios of stocks of small and large companies with high and low B/M ratio | Positive | [19,26,27,28,29,30,31,32,33,34] |
Size operating profit (SMBOP) [14] | Difference between returns of diversified portfolios of stocks of small and large companies with high and low operating income | Positive | N.A. |
Size investment (SMBINV) [14] | Difference between the returns of diversified portfolios of stocks of small and large companies with low and high investment | Positive | N.A. |
Size (SMB) [14] | Difference between the returns of diversified portfolios of stocks of small and large companies | Positive | [33,34,35] |
B/M ratio (HML) | Difference between the returns of diversified portfolios of high and low B/M ratio stocks | Positive | [19,26,27,28,29,30,31,32,33,34,35] |
Operating profitability (RMW) | Difference between returns on diversified portfolios of stocks of companies with high and low operating income | Positive | [33,34,35] |
Investment (CMA) | Difference between returns on diversified portfolios of stocks of low and high investment companies | Positive | [33,34,35] |
Variable | Mean | Std Deviation | Minimum | Maximum | Observations | ||
---|---|---|---|---|---|---|---|
GDP | Overall | 0.02827 | 0.03243 | −0.13433 | 0.13305 | N.T = | 312 |
Between | 0.02350 | 0.00734 | 0.08780 | N = | 12 | ||
Within | 0.02332 | −0.12599 | 0.10365 | T = | 26 | ||
MKT | Overall | 0.08472 | 0.26108 | −0.55360 | 0.86370 | N.T = | 312 |
Between | 0.01842 | 0.06982 | 0.10560 | N = | 12 | ||
Within | 0.26048 | −0.57447 | 0.84283 | T = | 26 | ||
SMB | Overall | 0.02072 | 0.09402 | −0.17240 | 0.44850 | N.T = | 312 |
Between | 0.00573 | 0.01608 | 0.02721 | N = | 12 | ||
Within | 0.09386 | −0.16777 | 0.44201 | T = | 26 | ||
SMBB/M | Overall | 0.00741 | 0.09019 | −0.17730 | 0.34440 | N.T = | 312 |
Between | 0.00077 | 0.00679 | 0.00828 | N = | 12 | ||
Within | 0.09019 | −0.17668 | 0.34353 | T = | 26 | ||
SMBOP | Overall | 0.03244 | 0.09265 | −0.16873 | 0.43013 | N.T = | 312 |
Between | 0.00734 | 0.02651 | 0.04075 | N = | 12 | ||
Within | 0.09238 | −0.16280 | 0.42182 | T = | 26 | ||
SMBINV | Overall | 0.02230 | 0.10512 | −0.18020 | 0.57103 | N.T = | 312 |
Between | 0.00907 | 0.01497 | 0.03258 | N = | 12 | ||
Within | 0.10476 | −0.17286 | 0.56076 | T = | 26 | ||
HML | Overall | 0.06319 | 0.14011 | −0.30320 | 0.50870 | N.T = | 312 |
Between | 0.03347 | 0.03611 | 0.10111 | N = | 12 | ||
Within | 0.13638 | −0.27612 | 0.47078 | T = | 26 | ||
RMW | Overall | 0.02801 | 0.09050 | −0.51730 | 0.12860 | N.T = | 312 |
Between | 0.01633 | 0.00951 | 0.04122 | N = | 12 | ||
Within | 0.08914 | −0.49881 | 0.13839 | T = | 26 | ||
CMA | Overall | 0.03167 | 0.09953 | −0.26800 | 0.30940 | N.T = | 312 |
Between | 0.01144 | 0.02242 | 0.04463 | N = | 12 | ||
Within | 0.09892 | −0.25874 | 0.29644 | T = | 26 |
Model | Pooled OLS | Quantile Regression | ||||||
---|---|---|---|---|---|---|---|---|
0.05 | 0.25 | 0.50 | 0.75 | 0.95 | ||||
Panel A: | ||||||||
1 | MKT | Coef | 0.036 *** | 0.079 *** | 0.045 *** | 0.038 *** | 0.037 *** | 0.019 ** |
SE | 0.006 | 0.011 | 0.003 | 0.004 | 0.011 | 0.008 | ||
2 | SMB | Coef | 0.020 | 0.124 * | 0.042 ** | 0.036 ** | 0.015 | 0.089 ** |
SE | 0.019 | 0.067 | 0.016 | 0.016 | 0.024 | 0.039 | ||
3 | HML | Coef | 0.032 | 0.079 ** | 0.020 * | 0.036 *** | 0.045 *** | 0.088 *** |
SE | 0.013 | 0.035 | 0.010 | 0.010 | 0.016 | 0.018 | ||
4 | RMW | Coef | −0.037 | 0.190 ** | −0.035 ** | −0.052 *** | −0.098 *** | −0.071 |
SE | 0.020 | 0.082 | 0.015 | 0.014 | 0.031 | 0.045 | ||
5 | CMA | Coef | −0.019 | −0.168 *** | −0.029 ** | −0.016 | 0.004 | 0.035 |
SE | 0.018 | 0.028 | 0.014 | 0.014 | 0.021 | 0.049 | ||
6 | SMBB/M | Coef | 0.013 | 0.122 | 0.033 * | 0.030 ** | −0.010 | 0.048 * |
SE | 0.020 | 0.084 | 0.019 | 0.015 | 0.021 | 0.026 | ||
7 | SMBOP | Coef | 0.027 | 0.133 ** | 0.044 *** | 0.034 ** | 0.026 | 0.099 *** |
SE | 0.019 | 0.064 | 0.016 | 0.017 | 0.023 | 0.021 | ||
8 | SMBINV | Coef | 0.018 | −0.095 | 0.034 ** | 0.033 ** | 0.018 | 0.074 *** |
SE | 0.017 | 0.062 | 0.012 | 0.015 | 0.021 | 0.021 | ||
Panel B: | ||||||||
9 | MKT | Coef | 0.039 *** | 0.081 *** | 0.045 *** | 0.040 *** | 0.043 *** | 0.017 * |
SE | 0.007 | 0.011 | 0.004 | 0.005 | 0.011 | 0.009 | ||
SMBB/M | Coef | −0.025 | −0.045 | −0.010 | −0.009 | −0.029 | 0.014 | |
SE | 0.020 | 0.033 | 0.010 | 0.015 | 0.032 | 0.025 | ||
10 | MKT | Coef | 0.037 *** | 0.08 1 *** | 0.045 *** | 0.037 *** | 0.036 *** | 0.005 |
SE | 0.007 | 0.014 | 0.004 | 0.005 | 0.012 | 0.008 | ||
SMBOP | Coef | −0.010 | −0.039 | 0.000 | 0.016 | −0.012 | 0.089 *** | |
SE | 0.020 | 0.039 | 0.011 | 0.014 | 0.033 | 0.023 | ||
Model | Pooled OLS | Quantile regression | ||||||
0.05 | 0.25 | 0.50 | 0.75 | 0.95 | ||||
11 | MKT | Coef | 0.039 *** | 0.083 *** | 0.044 *** | 0.038 *** | 0.039 *** | 0.009 |
SE | 0.007 | 0.011 | 0.004 | 0.006 | 0.011 | 0.018 | ||
SMBINV | Coef | −0.019 | −0.033 | −0.005 | 0.008 | −0.013 | 0.056 | |
SE | 0.018 | 0.027 | 0.009 | 0.014 | 0.026 | 0.044 | ||
Panel C: | ||||||||
12 | MKT | Coef | 0.039 *** | 0.089 *** | 0.049 *** | 0.046 *** | 0.025 *** | 0.007 *** |
SE | 0.008 | 0.015 | 0.004 | 0.008 | 0.010 | 0.002 | ||
SMB | Coef | −0.017 | 0.035 | −0.016 | −0.001 | −0.025 | 0.107 *** | |
SE | 0.023 | 0.041 | 0.012 | 0.023 | 0.026 | 0.005 | ||
HML | Coef | 0.038 *** | 0.019 | 0.026 *** | 0.039 ** | 0.055 *** | 0.050 *** | |
SE | 0.017 | 0.029 | 0.009 | 0.016 | 0.019 | 0.003 | ||
RMW | Coef | 0.037 | 0.235 *** | 0.016 | 0.028 | −0.044 | 0.020 *** | |
SE | 0.028 | 0.048 | 0.014 | 0.027 | 0.031 | 0.006 | ||
CMA | Coef | −0.017 | 0.039 | 0.004 | −0.025 | −0.028 | 0.067 *** | |
SE | 0.023 | 0.040 | 0.012 | 0.022 | 0.025 | 0.005 |
Fixed Effect | Coefficient | Std Error | z |
---|---|---|---|
Global Mean—GDP | 0.028 *** | 0.007 | 4.17 |
Random Effect | Variance Components (%) | Std Error (%) | z |
Level 1 (time) | |||
Temporal Variation (rti) | 0.056 *** | 0.005 | 12.25 |
Level 2 (country) | |||
Country Variation—Intercept (u0i) | 0.053 ** | 0.024 | 2.25 |
Variance Decomposition | % per Level | ||
Level 1 (time) | 51.512 | ||
Level 2 (country) | 48.488 | ||
LR test vs. OLS | 158.32 *** | ||
Log restricted-likelihood | 701.36 |
Fixed Effect | Coefficient | Std Error | z |
---|---|---|---|
Global Mean—GDP | 0.035 *** | 0.007 | 4.88 |
YEAR | −0.001 *** | 1.77 × 10−4 | −2.85 |
Random Effect | Variance Component (%) | Std Error (%) | z |
Level 1 (time) | |||
Temporal Variation (rti) | 0.055 *** | 0.005 | 12.23 |
Level 2 (country) | |||
Country Variation—Intercept (u0i) | 0.053 ** | 0.024 | 2.26 |
Variance Decomposition | % per Level | ||
Level 1 (time) | 50.900 | ||
Level 2 (country) | 49.100 | ||
LR test vs. OLS | 161.46 *** | ||
Log restricted-likelihood | 697.67 |
Country | Random Intercept | Country | Random Intercept |
---|---|---|---|
Brazil | −0.00412 | Italy | −0.02012 |
Canada | −0.00366 | Japan | −0.01827 |
China | 0.05725 | Russia | −0.00802 |
France | −0.01126 | South Africa | −0.00216 |
Germany | −0.01361 | UK | −0.00654 |
India | 0.03371 | United States | −0.00319 |
Fixed Effect | Coefficient | Std Error | z |
---|---|---|---|
Global Mean—GDP | 0.035 *** | 0.007 | 4.86 |
YEAR | −0.001 *** | 1.941 × 10−4 | −2.60 |
Random Effect | Variance Component (%) | Std Error (%) | z |
Level 1 (time) | |||
Temporal variance (rti) | 0.055 *** | 0.005 | 11.96 |
Level 2 (country) | |||
Country Variance—Intercept (u0i) | 0.054 ** | 0.024 | 2.20 |
Country Variance—Slope (u1i) | 7.9 × 10−8 | 1.78 × 10−7 | 0.44 |
Variance Decomposition | % per Level | ||
Level 1 (time) | 50.411 | ||
Level 2 (country) | 49.589 | ||
LR test vs. OLS | 161.71 *** | ||
Log restricted-likelihood | 697.79 | X2 | p |
LR test—Random Intercept Model vs. Random Intercept and Slope Model | 0.26 | 0.61 |
Fixed Effect | Coefficient | Std Error | z |
---|---|---|---|
Global Mean—GDP | 0.030 *** | 0.007 | 4.24 |
YEAR | −0.001 *** | 1.627 × 10−4 | −3.40 |
MKT | 0.043 *** | 0.005 | 7.98 |
RMW | 0.059 *** | 0.016 | 3.69 |
Random Effect | Variance Component (%) | Std Error (%) | z |
Level 1 (time) | |||
Temporal variance (rti) | 0.046 *** | 0.004 | 12.19 |
Level 2 (country) | |||
Country variance—Intercept (u0i) | 0.054 ** | 0.024 | 2.27 |
Variance Decomposition | % per Level | ||
Level 1 (time) | 45.807 | ||
Level 2 (country) | 54.193 | ||
LR test vs. OLS | 188.51 *** | ||
Log restricted-likelihood | 719.15 |
Fixed Effect | Coefficient | Std Error | z |
---|---|---|---|
Global Mean—GDP | 0.032 *** | 0.008 | 4.21 |
Global mean GDP growth rate (γ10) | −0.001 *** | 1.465 × 10−4 | −3.79 |
Random Effect | Variance Component (%) | Std Error (%) | z |
Level 1 | |||
Temporal variance (rti) | 0.037 *** | 0.003 | 11.71 |
Level 2 | |||
Country Variance—Intercept (u0i) | 0.062 ** | 0.027 | 2.28 |
Country Variance—Slope MKT (u1i) | 0.243 ** | 0.115 | 2.11 |
Country Variance—Slope RMW (u1i) | 1.018 ** | 0.487 | 2.09 |
Variance Decomposition | % per Level | ||
Level 1 (time) | 2.699 | ||
Level 2 (country) | 97.301 | ||
LR test vs. OLS | 234.60 *** | ||
Log restricted-likelihood | 734.24 |
Country | Random Intercept | Random Slope | ||
---|---|---|---|---|
YEAR MKT RMW as Fixed Effect Components | YEAR as Fixed Effect Components | MKT | RMW | |
Brazil | −0.00397 | −0.00557 | 0.04922 | 0.01287 |
Canada | −0.00382 | −0.00105 | 0.04290 | −0.04448 |
China | 0.05784 | 0.06062 | 0.01705 | −0.03760 |
France | −0.01147 | −0.01059 | 0.03852 | 0.00791 |
Germany | −0.01384 | −0.01564 | 0.06489 | 0.02938 |
India | 0.03413 | 0.03878 | −0.00447 | −0.02460 |
Italy | −0.02040 | −0.01977 | 0.04492 | 0.00136 |
Japan | −0.01853 | −0.01873 | 0.04975 | 0.01434 |
Russia | −0.00790 | −0.01492 | 0.07647 | 0.28924 |
South Africa | −0.00200 | −0.00177 | 0.02975 | 0.03371 |
UK | −0.00671 | −0.00730 | 0.04081 | 0.04156 |
USA | −0.00334 | −0.00405 | 0.04767 | 0.03408 |
Panel A | Panel B | Panel C | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Fixed Effect | Coef | SE | z | Fixed Effect | Coef | SE | z | Fixed Effect | Coef | SE | z |
Global Mean (Gm)—GDP | 0.032 *** | 0.007 | 4.57 | Gm GDP | 0.033 *** | 0.007 | 4.65 | Gm GDP | 0.033 *** | 0.007 | 4.68 |
YEAR | −0.001 *** | 1.64 × 10−4 | −3.07 | YEAR | −0.001 *** | 1.66 × 10−4 | −3.13 | YEAR | −0.001 *** | 1.65 × 10−4 | −3.33 |
MKT | 0.036 *** | 0.005 | 7.22 | MKT | 0.036 *** | 0.005 | 7.16 | MKT | 0.038 *** | 0.005 | 7.54 |
SMBB/M | −0.028 * | 0.015 | 1.92 | SMBOP | −0.026 * | 0.014 | −1.79 | SMBINV | −0.035 ** | 0.013 | 2.73 |
Random Effect | VC (%) | SE (%) | z | VC (%) | SE (%) | z | VC (%) | SE (%) | z | ||
Level 1 (time) | |||||||||||
Temporal Variance (rti) | 0.047 *** | 0.004 | 12.19 | 0.047 *** | 0.004 | 12.20 | 0.047 *** | 0.004 | 12.19 | ||
Level 2 (country) | |||||||||||
Country Variance—Intercept (u0i) | 0.052 *** | 0.025 | 2.27 | 0.052 *** | 0.023 | 2.27 | 0.052 *** | 0.023 | 2.27 | ||
Variance Decomposition | % per Level | % per Level | per Level | ||||||||
Level 1 (time) | 47.738 | 47.551 | 47.066 | ||||||||
Level 2 (country) | 52.262 | 52.449 | 52.934 | ||||||||
LR test vs. OLS | 178.57 *** | 179.51 *** | 182.29 *** | ||||||||
Log restricted-likelihood | 714.24 | 713.99 | 715.97 |
Country | Panel A Independent Variable YEAR MKT SMBB/M | Panel B Independent Variable YEAR MKT SMBOP | Panel C Independent Variable YEAR MKT SMBINV |
---|---|---|---|
Brazil | −0.00484 | −0.00466 | −0.00457 |
Canada | −0.00318 | −0.00331 | −0.00338 |
China | 0.05681 | 0.05701 | 0.05714 |
France | −0.01081 | −0.01094 | −0.01102 |
Germany | −0.01317 | −0.01330 | −0.01338 |
India | 0.03315 | 0.03335 | 0.03347 |
Italy | −0.01971 | −0.01985 | −0.01993 |
Japan | −0.01785 | −0.01798 | −0.01807 |
Russia | −0.00876 | −0.00858 | −0.00849 |
South Africa | −0.00288 | −0.00270 | −0.00260 |
UK | −0.00606 | −0.00620 | −0.00627 |
USA | −0.00270 | −0.00283 | −0.00290 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ferreira, J.C.J.; Gama, A.P.M.; Fávero, L.P.; Serra, R.G.; Belfiore, P.; Costa, I.P.d.A.; Santos, M.d. Economic Performance and Stock Market Integration in BRICS and G7 Countries: An Application with Quantile Panel Data and Random Coefficients Modeling. Mathematics 2022, 10, 4013. https://doi.org/10.3390/math10214013
Ferreira JCJ, Gama APM, Fávero LP, Serra RG, Belfiore P, Costa IPdA, Santos Md. Economic Performance and Stock Market Integration in BRICS and G7 Countries: An Application with Quantile Panel Data and Random Coefficients Modeling. Mathematics. 2022; 10(21):4013. https://doi.org/10.3390/math10214013
Chicago/Turabian StyleFerreira, José Clemente Jacinto, Ana Paula Matias Gama, Luiz Paulo Fávero, Ricardo Goulart Serra, Patrícia Belfiore, Igor Pinheiro de Araújo Costa, and Marcos dos Santos. 2022. "Economic Performance and Stock Market Integration in BRICS and G7 Countries: An Application with Quantile Panel Data and Random Coefficients Modeling" Mathematics 10, no. 21: 4013. https://doi.org/10.3390/math10214013
APA StyleFerreira, J. C. J., Gama, A. P. M., Fávero, L. P., Serra, R. G., Belfiore, P., Costa, I. P. d. A., & Santos, M. d. (2022). Economic Performance and Stock Market Integration in BRICS and G7 Countries: An Application with Quantile Panel Data and Random Coefficients Modeling. Mathematics, 10(21), 4013. https://doi.org/10.3390/math10214013