On a Lyapunov-Type Inequality for Control of a ψ-Model Thermostat and the Existence of Its Solutions
Abstract
:1. Introduction
2. Basic Notions
3. Green’s Function
- (i)
- .
- (ii)
- .
4. Lyapunov-Type Inequality
- Assumption : There exist and a positive, concave and non-decreasing function such that
5. Some Existence and Non-Existence Results
- Assumption : There exists such that
- Assumption : There exists a constant such that
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pinasco, J.P. Lyapunov-Type Inequalities; Springer: New York, NY, USA, 2013. [Google Scholar]
- Canada, A.; Villegas, S. A Variational Approach to Lyapunov Type Inequalities; Springer: Cham, Switzerland, 2015. [Google Scholar]
- Agarwal, R.P.; Bohner, M.; Ozbekler, A. Lyapunov Inequalities and Applications; Springer: Cham, Switzerland, 2021. [Google Scholar]
- Clark, S.; Hinton, D.B. A Lyapunov inequality for linear Hamiltonian systems. Math. Inequal. Appl. 1998, 1, 201–209. [Google Scholar]
- Lyapunov, A.M. Problème général de la stabilité du mouvement. Ann. Fac. Sci. Univ. Tolouse. 1907, 2, 203–407. [Google Scholar]
- Yang, X.J.; Kim, Y.I.; Lo, K.M. Lyapunov-type inequalities for a class of higher-order linear differential equations. Appl. Math. Lett. 2014, 34, 86–89. [Google Scholar] [CrossRef]
- Agarwal, R.P.; Ozbekler, A. Lyapunov type inequalities for nth order forced differential equations with mixed nonlinearities. Commun. Pure Appl. Anal. 2016, 15, 2281–2300. [Google Scholar]
- Ferreira, R.A.C. A Lyapunov-type inequality for a fractional boundary value problem. Fract. Calc. Appl. Anal. 2013, 16, 978–984. [Google Scholar] [CrossRef]
- Ferreira, R.A.C. On a Lyapunov-type inequality and the zeros of a certain Mittag-Leffler function. J. Math. Anal. Appl. 2014, 412, 1058–1063. [Google Scholar] [CrossRef]
- Jleli, M.; Samet, B. A Lyapunov-type inequality for a fractional q-difference boundary value problem. J. Nonlinear Sci. Appl. 2016, 9, 1965–1976. [Google Scholar] [CrossRef] [Green Version]
- Ma, K.K.; Han, Z.L. Lyapunov-type inequalities on fractional q-difference Schrodinger equation with Woods-Saxon potential. Int. J. Dyn. Syst. Differ. Equ. 2019, 9, 105–119. [Google Scholar] [CrossRef]
- Pathak, N. Lyapunov-type inequality for fractional boundary value problems with Hilfer derivative. Math. Inequal. Appl. 2018, 21, 179–200. [Google Scholar]
- Ma, D.; Yang, Z. Lyapunov-type inequality and solution for a fractional differential equation. J. Inequal. Appl. 2020, 2020, 181. [Google Scholar] [CrossRef]
- Kassymov, A.; Torebek, B.T. Lyapunov-type inequalities for a nonlinear fractional boundary value problem. RACSAM 2021, 115, 15. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, S. A Lyapunov-type inequality for partial differential equation involving the mixed Caputo derivative. Mathematics 2020, 8, 47. [Google Scholar] [CrossRef] [Green Version]
- Ntouyas, S.K.; Ahmad, B.; Tariboon, J. A survey on recent results on Lyapunov-type inequalities for fractional differential equations. Fractal Fract. 2022, 6, 273. [Google Scholar] [CrossRef]
- Bonyah, E.; Chukwu, C.W.; Juga, M.L. Fatmawati, Modeling fractional-order dynamics of Syphilis via Mittag-Leffler law. AIMS Math. 2021, 6, 8367–8389. [Google Scholar] [CrossRef]
- Baleanu, D.; Etemad, S.; Rezapour, S. A hybrid Caputo fractional modeling for thermostat with hybrid boundary value conditions. Bound. Value Probl. 2020, 2020, 64. [Google Scholar] [CrossRef] [Green Version]
- Khan, A.; Shah, K.; Abdeljawad, T.; Alqudah, M.A. Existence of results and computational analysis of a fractional order two strain epidemic model. Res. Phys. 2022, 39, 105649. [Google Scholar] [CrossRef]
- Mohammad, H.; Kumar, S.; Rezapour, S.; Etemad, S. A theoretical study of the Caputo–Fabrizio fractional modeling for hearing loss due to Mumps virus with optimal control. Chaos Solitons Fractals 2021, 144, 110668. [Google Scholar] [CrossRef]
- Asamoah, J.K.K.; Okyere, E.; Yankson, E.; Opoku, A.A.; Adom-Konadu, A.; Acheampong, E.; Arthur, Y.D. Non-fractional and fractional mathematical analysis and simulations for Q fever. Chaos Solitons Fractals 2022, 156, 111821. [Google Scholar] [CrossRef]
- Wu, Y.; Ahmad, S.; Ullah, A.; Shah, K. Study of the fractional-order HIV-1 infection model with uncertainty in initial data. Math. Probl. Eng. 2022, 2022, 7286460. [Google Scholar] [CrossRef]
- Etemad, S.; Avci, I.; Kumar, P.; Baleanu, D.; Rezapour, S. Some novel mathematical analysis on the fractal–fractional model of the AH1N1/09 virus and its generalized Caputo-type version. Chaos Solitons Fractals 2022, 162, 112511. [Google Scholar] [CrossRef]
- Najafi, H.; Etemad, S.; Patanarapeelert, N.; Asamoah, J.K.K.; Rezapour, S.; Sitthiwirattham, T. A study on dynamics of CD4+ T-cells under the effect of HIV-1 infection based on a mathematical fractal-fractional model via the Adams-Bashforth scheme and Newton polynomials. Mathematics 2022, 10, 1366. [Google Scholar] [CrossRef]
- Abbas, M.I.; Ragusa, M.A. On the hybrid fractional differential equations with fractional proportional derivatives of a function with respect to a certain function. Symmetry 2021, 13, 264. [Google Scholar] [CrossRef]
- Rezapour, S.; Ntouyas, S.K.; Iqbal, M.Q.; Hussain, A.; Etemad, S.; Tariboon, J. An analytical survey on the solutions of the generalized double-order φ-integrodifferential equation. J. Funct. Spaces 2021, 2021, 6667757. [Google Scholar] [CrossRef]
- Rezapour, S.; Etemad, S.; Tellab, B.; Agarwal, P.; Guirao, J.L.G. Numerical solutions caused by DGJIM and ADM methods for multi-term fractional BVP involving the generalized ψ-RL-operators. Symmetry 2021, 13, 532. [Google Scholar] [CrossRef]
- Mohammadi, H.; Rezapour, S.; Etemad, S.; Baleanu, D. Two sequential fractional hybrid differential inclusions. Adv. Differ. Equ. 2020, 2020, 385. [Google Scholar] [CrossRef]
- Agarwal, R.P.; Hristova, S.; O’regan, D. Generalized proportional Caputo fractional differential equations with noninstantaneous impulses: Concepts, integral representations, and Ulam-type stability. Mathematics 2022, 10, 2315. [Google Scholar] [CrossRef]
- Infante, G.; Webb, J. Loss of positivity in a nonlinear scalar heat equation. Nonlinear Diff. Equ. Appl. 2006, 13, 249–261. [Google Scholar] [CrossRef]
- Nieto, J.J.; Pimentel, J. Positive solutions of a fractional thermostat model. Bound. Value Probl. 2013, 2013, 5. [Google Scholar] [CrossRef] [Green Version]
- Cabrera, I.J.; Rocha, J.; Sadarangani, K.B. Lyapunov type inequalities for a fractional thermostat model. RACSAM 2018, 112, 17–24. [Google Scholar] [CrossRef]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; North Holland Mathematics Studies, 203; Elsevier: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Almeida, R. A Caputo fractional derivative of a function with respect to another function. Commun. Nonlinear Sci. Numer. Simul. 2017, 44, 460–481. [Google Scholar] [CrossRef] [Green Version]
- Almeida, R.; Malinowska, A.B.; Teresa, N.; Monteiro, T. Fractional differential equations with a Caputo derivative with respect to a kernel function and their applications. Math. Methods Appl. Sci. 2018, 41, 336–352. [Google Scholar] [CrossRef] [Green Version]
- Rudin, W. Real and Complex Analysis, 3rd ed.; McGraw-Hill Book Company: New York, NY, USA, 1987. [Google Scholar]
- Jiang, F.; Xu, X.; Cao, Z. The positive properties of Green’s function for fractional differential equations and its applications. Abstr. Appl. Anal. 2013, 2013, 531038. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y. The Green’s function of a class of two-term fractional differential equation boundary value problem and its applications. Adv. Differ. Equ. 2020, 2020, 80. [Google Scholar] [CrossRef] [Green Version]
- Khan, H.; Tunc, C.; Khan, A. Green function’s properties and existence theorems for nonlinear singular-delay-fractional differential equations. Discret. Contin. Dyn. Syst. S 2020, 13, 2475–2487. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rezapour, S.; Etemad, S.; Agarwal, R.P.; Nonlaopon, K. On a Lyapunov-Type Inequality for Control of a ψ-Model Thermostat and the Existence of Its Solutions. Mathematics 2022, 10, 4023. https://doi.org/10.3390/math10214023
Rezapour S, Etemad S, Agarwal RP, Nonlaopon K. On a Lyapunov-Type Inequality for Control of a ψ-Model Thermostat and the Existence of Its Solutions. Mathematics. 2022; 10(21):4023. https://doi.org/10.3390/math10214023
Chicago/Turabian StyleRezapour, Shahram, Sina Etemad, Ravi P. Agarwal, and Kamsing Nonlaopon. 2022. "On a Lyapunov-Type Inequality for Control of a ψ-Model Thermostat and the Existence of Its Solutions" Mathematics 10, no. 21: 4023. https://doi.org/10.3390/math10214023
APA StyleRezapour, S., Etemad, S., Agarwal, R. P., & Nonlaopon, K. (2022). On a Lyapunov-Type Inequality for Control of a ψ-Model Thermostat and the Existence of Its Solutions. Mathematics, 10(21), 4023. https://doi.org/10.3390/math10214023