Notes on Convergence Results for Parabolic Equations with Riemann–Liouville Derivatives
Abstract
:1. Introduction
2. Preliminaries
3. Inhomogeneous Case
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, C.; Qian, D.; Chen, Y.Q. On Riemann-Liouville and Caputo Derivatives. Discret. Dyn. Nat. Soc. 2011, 2011, 562494. [Google Scholar] [CrossRef] [Green Version]
- Podlubny, I. Fractional Differential Equations; Academic Press: London, UK, 1999. [Google Scholar]
- Nigmatullin, R.R. The realization of the generalized transfer equation in a medium with fractal geometry. Physica Status Solidi B 1986, 133, 425–430. [Google Scholar] [CrossRef]
- Tuan, N.H.; Caraballo, T. On initial and terminal value problems for fractional nonclassical diffusion equations. Proc. Am. Math. Soc. 2021, 149, 143–161. [Google Scholar] [CrossRef]
- Kou, S. Stochastic modeling in nanoscale biophysics: Subdiffusion within proteins. Ann. Appl. Stat. 2008, 2, 501–535. [Google Scholar] [CrossRef]
- Zhao, C.; Caraballo, T.; Łukaszewicz, G. Statistical solution and Liouville type theorem for the Klein-Gordon-Schrödinger equations. J. Differ. Equ. 2021, 281, 1–32. [Google Scholar] [CrossRef]
- Zhao, C.; Wang, J.; Caraballo, T. Invariant sample measures and random Liouville type theorem for the two-dimensional stochastic Navier-Stokes equations. J. Differ. Equ. 2022, 317, 474–494. [Google Scholar] [CrossRef]
- Tuan, N.H.; Nguyen, A.T.; Yang, C. Global well-posedness for fractional Sobolev-Galpern type equations. Discret. Contin. Dyn. Syst. 2022, 42, 2637–2665. [Google Scholar]
- Tuan, N.A.; Tuan, N.H.; Yang, C. On Cauchy problem for fractional parabolic-elliptic Keller-Segel model. Adv. Nonlinear Anal. 2023, 12, 97–116. [Google Scholar]
- Tuan, N.H.; Au, V.V.; Nguyen, A.T. Mild solutions to a time-fractional Cauchy problem with nonlocal nonlinearity in Besov spaces. Arch. Math. 2022, 118, 305–314. [Google Scholar] [CrossRef]
- Tuan, N.H.; Foondun, M.; Thach, T.N.; Wang, R. On backward problems for stochastic fractional reaction equations with standard and fractional Brownian motion. Bull. Sci. Math. 2022, 179, 103158. [Google Scholar] [CrossRef]
- Tuan, N.A.; Caraballo, T.; Tuan, N.H. On the initial value problem for a class of nonlinear biharmonic equation with time-fractional derivative. Proc. R. Soc. Edinb. Sect. A 2022, 152, 989–1031. [Google Scholar] [CrossRef]
- Caraballo, T.; Mchiri, L.; Rhaima, M. Ulam–Hyers–Rassias stability of neutral stochastic functional differential equations. Stochastics 2022, 94, 959–971. [Google Scholar] [CrossRef]
- Xu, J.; Zhang, Z.; Caraballo, T. Mild Solutions to Time Fractional Stochastic 2D-Stokes Equations with Bounded and Unbounded Delay. J. Dyn. Differ. Equ. 2022, 34, 583–603. [Google Scholar] [CrossRef]
- Caraballo, T.; Guo, B.; Tuan, N.H.; Wang, R. Asymptotically autonomous robustness of random attractors for a class of weakly dissipative stochastic wave equations on unbounded domains. Proc. R. Soc. Edinb. Sect. A 2021, 151, 1700–1730. [Google Scholar] [CrossRef]
- Bao, N.T.; Caraballo, T.; Tuan, N.H.; Zhou, Y. Existence and regularity results for terminal value problem for nonlinear fractional wave equations. Nonlinearity 2021, 34, 1448–1503. [Google Scholar] [CrossRef]
- Xu, J.; Zhang, Z.; Caraballo, T. Non-autonomous nonlocal partial differential equations with delay and memory. J. Differ. Equ. 2021, 270, 505–546. [Google Scholar] [CrossRef]
- Caraballo, T.; Ezzine, F.; Hammami, M.A.; Mchiri, L. Practical stability with respect to a part of variables of stochastic differential equations. Stochastics 2021, 93, 647–664. [Google Scholar] [CrossRef]
- Zhao, C.; Li, Y.; Caraballo, T. Trajectory statistical solutions and Liouville type equations for evolution equations: Abstract results and applications. J. Differ. Equ. 2020, 269, 467–494. [Google Scholar] [CrossRef]
- Nguyen, D.P.; Luu, V.C.H.; Erdal, K.; Jagdev, S.; Ho, D.B.; Nguyen, H.C. Fractional order continuity of a time semi-linear fractional diffusion-wave system. Alex. Eng. J. 2020, 59, 4959–4968. [Google Scholar] [CrossRef]
- Nguyen, H.L.; Le, N.H.; Dumitru, B.; Nguyen, H.C. Identifying the space source term problem for a generalization of the fractional diffusion equation with hyper-Bessel operator. Adv. Differ. Equ. 2020, 2020, 1–23. [Google Scholar] [CrossRef]
- Tuan, N.H.; Phuong, N.D.; Thach, T.N. New well-posedness results for stochastic delay Rayleigh-Stokes equations. Discret. Contin. Dyn. Syst. Ser. B 2023, 28, 347. [Google Scholar] [CrossRef]
- Wanga, X.; Wanga, L.; Zeng, Q. Fractional differential equations with integral boundary conditions. J. Nonlinear Sci. Appl. 2015, 8, 309–314. [Google Scholar] [CrossRef]
- Zhai, C.; Jiang, R. Unique solutions for a new coupled system of fractional differential equations. Adv. Differ. Equ. 2018, 2018, 1. [Google Scholar] [CrossRef] [Green Version]
- Kou, C.; Zhou, H.; Li, C. Existence and continuation theorems of Riemann-Liouville type fractional differential equations. Int. J. Bifurc. Chaos Appl. Sci. Engrgy 2012, 22, 1250077. [Google Scholar] [CrossRef]
- Ngoc, T.B.; Zhou, Y.; O’Regan, D.; Tuan, N.H. On a terminal value problem for pseudoparabolic equations involving Riemann-Liouville fractional derivatives. Appl. Math. Lett. 2020, 106, 106373. [Google Scholar] [CrossRef]
- Luc, N.H. Remarks on a 1-D nonlocal in time fractional diffusion equation with inhomogeneous sources. Bull. Math. Anal. Appl. 2021, 13, 1–12. Available online: http://www.bmathaa.org (accessed on 30 September 2022).
- Chen, H.; Stynes, M. Blow-up of error estimates in time-fractional initial-boundary value problems. IMA J. Numer. Anal. 2021, 41, 974–997. [Google Scholar] [CrossRef]
- Tuan, N.H.; Huynh, L.N.; Ngoc, T.B.; Zhou, Y. On a backward problem for nonlinear fractional diffusion equations. Appl. Math. Lett. 2019, 92, 76–84. [Google Scholar] [CrossRef]
- Nguyen, H.T.; Vo, V.A.; Xu, R.; Renhai, W. On the initial and terminal value problem for a class of semilinear strongly material damped plate equations. J. Math. Anal. Appl. 2020, 492, 124481. [Google Scholar] [CrossRef] [Green Version]
- Sakamoto, K.; Yamamoto, M. Initial value/boudary value problems for fractional diffusion- wave equations and applications to some inverse problems. J. Math. Anal. Appl. 2011, 382, 426–447. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Le Dinh, L.; Donal, O. Notes on Convergence Results for Parabolic Equations with Riemann–Liouville Derivatives. Mathematics 2022, 10, 4026. https://doi.org/10.3390/math10214026
Le Dinh L, Donal O. Notes on Convergence Results for Parabolic Equations with Riemann–Liouville Derivatives. Mathematics. 2022; 10(21):4026. https://doi.org/10.3390/math10214026
Chicago/Turabian StyleLe Dinh, Long, and O’regan Donal. 2022. "Notes on Convergence Results for Parabolic Equations with Riemann–Liouville Derivatives" Mathematics 10, no. 21: 4026. https://doi.org/10.3390/math10214026
APA StyleLe Dinh, L., & Donal, O. (2022). Notes on Convergence Results for Parabolic Equations with Riemann–Liouville Derivatives. Mathematics, 10(21), 4026. https://doi.org/10.3390/math10214026