Mathematical and Computational Biology of Viruses at the Molecular or Cellular Levels
Description/Preface
Author Contributions
Funding
Conflicts of Interest
References
- Churkin, A.; Totzeck, F.; Zakh, R.; Parr, M.; Tuller, T.; Frishman, D.; Barash, D. A mathematical analysis of RNA structural motifs in viruses. Mathematics 2021, 9, 585. [Google Scholar] [CrossRef]
- Kiening, M.; Ochsenreiter, R.; Hellinger, H.J.; Rattei, T.; Hofacker, I.L.; Frishman, D. Conserved secondary structures in viral mRNAs. Viruses 2019, 11, 401. [Google Scholar] [CrossRef] [Green Version]
- Grone, R.; Merris, R. Ordering trees by algebraic connectivity. Graphs Comb. 1990, 6, 229–237. [Google Scholar] [CrossRef]
- Zakh, R.; Churkin, A.; Totzeck, F.; Parr, M.; Tuller, T.; Etzion, O.; Dahari, H.; Roggendorf, M.; Frishman, D.; Barash, D. A mathematical analysis of HDV genotypes: From molecules to cells. Mathematics 2021, 9, 2063. [Google Scholar] [CrossRef]
- Usman, Z.; Velkov, S.; Protzer, U.; Roggendorf, M.; Frishman, D.; Karimzadeh, H. HDVbd: A comprehensive hepatits D virus database. Viruses 2020, 12, 538. [Google Scholar] [CrossRef] [PubMed]
- Casey, J.L. RNA editing in hepatitis delta virus genotype III requires a branched double-hairpin RNA structure. J. Virol. 2002, 76, 7385–7397. [Google Scholar] [CrossRef] [Green Version]
- Dziri, S.; Rodriguez, C.; Gerber, A.; Brichler, S.; Alloui, C.; Roulot, D.; Dény, P.; Pawlotsky, J.M.; Gordien, E.; Le Gal, F. Variable in-vivo hepatitis D virus (HDV) RNA editing rates according to the HDV genotype. Viruses 2021, 13, 1572. [Google Scholar] [CrossRef]
- Markham, N.R.; Zuker, M. UNAFold: Software for nucleic acid folding and hybridization. Methods Mol. Biol. 2008, 453, 3–31. [Google Scholar] [PubMed]
- Lorentz, R.; Bernhart, S.H.; Höner zu Siederdissen, C.; Tafer, H.; Flamm, C.; Stadler, P.F.; Hofacker, I.L. ViennaRNA Package 2.0. Algorithms Mol. Biol. 2011, 6, 26. [Google Scholar] [CrossRef] [PubMed]
- Darty, K.; Denise, A.; Ponty, Y. VARNA: Interactive drawing and editing of the RNA secondary structure. Bioinformatics 2009, 25, 1974–1975. [Google Scholar] [CrossRef]
- Sazonov, I.; Grebennikov, D.; Meyerhans, A.; Bocharov, G. Markov chain-based stochastic modelling of HIV-1 life cycle in a CD4 T cell. Mathematics 2021, 9, 2025. [Google Scholar] [CrossRef]
- Lederman, D.; Patel, R.; Itani, O.; Rotstein, H.G. Parameter estimation in the age of degeneracy and unidentifiability. Mathematics 2022, 10, 170. [Google Scholar] [CrossRef]
- Zakh, R.; Churkin, A.; Bietsch, W.; Lachiany, M.; Cotler, S.J.; Ploss, A.; Dahari, H.; Barash, D. A mathematical model for early hbv and-hdv kinetics during anti-hdv treatment. Mathematics 2021, 9, 3323. [Google Scholar] [CrossRef] [PubMed]
- Barash, D. Nonlinear diffusion filtering on an extended neighborhood. Appl. Numer. Math. 2005, 52, 1–11. [Google Scholar] [CrossRef]
- Reinharz, V.; Dahari, H.; Barash, D. Numerical schemes for solving and optimizing multiscale models with age of hepatitis C virus dynamics. Math. Biosci. 2018, 300, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Mhlanga, A.; Zakh, R.; Churkin, A.; Reinharz, V.; Glenn, J.S.; Etzion, O.; Cotler, S.J.; Yurdaydin, C.; Barash, D.; Dahari, H. Modeling the Interplay between HDV and HBV in Chronic HDV/HBV Patients. Mathematics 2022, 10, 3917. [Google Scholar] [CrossRef]
- de Sousa, B.C.; Cunha, C. Development of mathematical models for the analysis of hepatitis delta virus viral dynamics. PLoS ONE 2010, 5, e12512. [Google Scholar] [CrossRef] [Green Version]
- Packer, A.; Forde, J.; Hews, S.; Kuang, Y. Mathematical models of the interrelated dynamics of hepatitis D and B. Math. Biosci. 2014, 247, 38–46. [Google Scholar] [CrossRef] [PubMed]
- Grebennikov, D.; Karsonova, A.; Loguinova, M.; Casella, V.; Meyerhans, A.; Bocharov, G. Predicting the Kinetic Coordination of Immune Response Dynamics in SARS-CoV-2 Infection: Implications for Disease Pathogenesis. Mathematics 2022, 10, 3154. [Google Scholar] [CrossRef]
- Ke, R.; Zitmann, C.; Ho, D.D.; Perelson, A. In vivo kinetics of SARS-CoV-2 infection and its relationship with a person’s infectiousness. Proc. Natl. Acad. Sci. USA 2021, 118, e2111477118. [Google Scholar] [CrossRef]
- Guedj, J.; Dahari, H.; Rong, L.; Sansone, N.D.; Nettles, R.E.; Cotler, S.J.; Layden, T.J.; Uprichard, S.L.; Perelson, A.S. Modeling shows that the NS5A inhibitor daclatasvir has two modes of action and yields a shorter estimate of the hepatitis C virus half-life. Proc. Natl. Acad. Sci. USA 2013, 110, 3991–3996. [Google Scholar] [CrossRef] [Green Version]
- Rong, L.; Guedj, J.; Dahari, H.; Coffield, D.J., Jr.; Levi, M.; Smith, P.; Perelson, A.S. Analysis of hepatitis C virus decline during treatment with the protease inhibitor Danoprevir using a multiscale model. PLoS Comput. Biol. 2013, 9, e1002959. [Google Scholar] [CrossRef]
- Rong, L.; Perelson, A.S. Mathematical analysis of multiscale models for hepatitis C virus dynamics under therapy with direct-acting antiviral agents. Math. Biosci. 2013, 245, 22–30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Quintela, B.D.M.; Conway, J.M.; Hyman, J.M.; Guedj, J.; dos Santos, R.W.; Lobosco, M.; Perelson, A.S. A new age-structured multiscale model of the hepatitis C virus life-cycle during infection and therapy with direct-acting antiviral agents. Front. Microbiol. 2018, 9, 601. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Churkin, A.; Barash, D. Mathematical and Computational Biology of Viruses at the Molecular or Cellular Levels. Mathematics 2022, 10, 4446. https://doi.org/10.3390/math10234446
Churkin A, Barash D. Mathematical and Computational Biology of Viruses at the Molecular or Cellular Levels. Mathematics. 2022; 10(23):4446. https://doi.org/10.3390/math10234446
Chicago/Turabian StyleChurkin, Alexander, and Danny Barash. 2022. "Mathematical and Computational Biology of Viruses at the Molecular or Cellular Levels" Mathematics 10, no. 23: 4446. https://doi.org/10.3390/math10234446
APA StyleChurkin, A., & Barash, D. (2022). Mathematical and Computational Biology of Viruses at the Molecular or Cellular Levels. Mathematics, 10(23), 4446. https://doi.org/10.3390/math10234446