WSI: A New Early Warning Water Survival Index for the Domestic Water Demand
Abstract
:1. Introduction
2. Preliminary
2.1. Water Supply Monitoring Index
2.2. Water Level Prediction
2.3. Domestic Water Prediction
2.4. Hydrologic Indicators
2.5. Machine Learning
2.5.1. Random Forest
2.5.2. M5 Model Trees
2.5.3. Multiple Linear Regression
2.5.4. Support Vector Regression
3. Materials and Methods
3.1. Feitsui Reservoir
3.2. Research Framework
3.2.1. Process of Stage 1
3.2.2. Process of Stage 2
3.3. Water Survival Index (WSI)
- RD = The remaining days of domestic water demand in the reservoir;
- WS = Effective water storage capacity of the reservoir;
- POP = The population of Great Taipei (currently assume a Taipei City population of 2.49 million and a New Taipei City population of 3.99 million);
- WD = Domestic water demand per person in Greater Taipei.
- WSIi,j (t + 1): Water survival index at time t + 1 (i = 6 or 12),(j = 30, 90, 180);
- RDp(t + 1): The predicted value of the remaining days of the reservoir’s domestic water demand at time t + 1;
- RDi(t + 1): The i-year historical average of the remaining days of the reservoir’s domestic water demand at time t + 1.
3.4. Performance Metrics
4. Results
4.1. Data Preprocessing
4.2. Results of Stage 1
4.3. Results of Stage 2
4.4. Results of WSI
5. Discussion
5.1. Stage 1 Research Result Discussion
5.2. WSI Performance Measures
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Aviso, K.B.; Chien, C.-F.; Lim, M.K.; Tan, R.R.; Tseng, M.-L. Taiwan Drought was a Microcosm of Climate Change Adaptation Challenges in Complex Island Economies. Process Integr. Optim. Sustain. 2021, 5, 317–318. [Google Scholar] [CrossRef]
- Wu, R.S.; Liu, J.S.; Chang, J.S. Modeling Irrigation System for Water Management of a Companion and Inter Cropping Field in Central Taiwan. In Proceedings of the 2nd World Irrigation Forum, Chiang Mai, Thailand, 6–8 November 2016; pp. 6–8. [Google Scholar]
- Graf, W.L. Geomorphology and American dams: The scientific, social, and economic context. Geomorphology 2005, 71, 3–26. [Google Scholar] [CrossRef]
- Ishak, W.H.W.; Ku-Mahamud, K.R.; Norwawi, N.M. Neural network application in reservoir water level forecasting and release decision. Int. J. New Comput. Archit. Appl. 2011, 1, 256–274. [Google Scholar]
- Tsao, H.-H.; Leu, Y.-G.; Chou, L.-F.; Tsao, C.-Y. A Method of Multi-Stage Reservoir Water Level Forecasting Systems: A Case Study of Techi Hydropower in Taiwan. Energies 2021, 14, 3461. [Google Scholar] [CrossRef]
- Khaliq, M.N.; Ouarda, T.B.; Gachon, P.; Sushama, L.; St-Hilaire, A. Identification of hydrological trends in the presence of serial and cross correlations: A review of selected methods and their application to annual flow regimes of Canadian rivers. J. Hydrol. 2009, 368, 117–130. [Google Scholar] [CrossRef]
- Karunanayake, C.; Gunathilake, M.B.; Rathnayake, U. Inflow forecast of iranamadu reservoir, Sri Lanka, under projected climate scenarios using artificial neural networks. Appl. Comput. Intell. Soft Comput. 2020, 2020, 8821627. [Google Scholar] [CrossRef]
- Seo, Y.; Kim, S.; Kisi, O.; Singh, V.P. Daily water level forecasting using wavelet decomposition and artificial intelligence techniques. J. Hydrol. 2015, 520, 224–243. [Google Scholar] [CrossRef]
- Zhu, S.; Hrnjica, B.; Ptak, M.; Choiński, A.; Sivakumar, B. Forecasting of water level in multiple temperate lakes using machine learning models. J. Hydrol. 2020, 585, 124819. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, S. Machine learning-based water level prediction in Lake Erie. Water 2020, 12, 2654. [Google Scholar] [CrossRef]
- Jain, A.; Varshney, A.K.; Joshi, U.C. Short-term water demand forecast modelling at IIT Kanpur using artificial neural networks. Water Resour. Manag. 2001, 15, 299–321. [Google Scholar] [CrossRef]
- Al-Zahrani, M.A.; Abo-Monasar, A. Urban residential water demand prediction based on artificial neural networks and time series models. Water Resour. Manag. 2015, 29, 3651–3662. [Google Scholar] [CrossRef]
- Zubaidi, S.L.; Al-Bugharbee, H.; Ortega-Martorell, S.; Gharghan, S.K.; Olier, I.; Hashim, K.S.; Al-Bdairi, N.; Kot, P. A novel methodology for prediction urban water demand by wavelet denoising and adaptive neuro-fuzzy inference system approach. Water 2020, 12, 1628. [Google Scholar] [CrossRef]
- Hashimoto, T.; Stedinger, J.R.; Loucks, D.P. Reliability, resiliency, and vulnerability criteria for water resource system performance evaluation. Water Resour. Res. 1982, 18, 14–20. [Google Scholar] [CrossRef] [Green Version]
- Pedro-Monzonís, M.; Solera, A.; Ferrer, J.; Estrela, T.; Paredes-Arquiola, J. A review of water scarcity and drought indexes in water resources planning and management. J. Hydrol. 2015, 527, 482–493. [Google Scholar] [CrossRef] [Green Version]
- Yoo, C.; Jun, C.; Zhu, J.; Na, W. Evaluation of Dam Water-Supply Capacity in Korea Using the Water-Shortage Index. Water 2021, 13, 956. [Google Scholar] [CrossRef]
- Kuo, J.-T.; Yen, B.-C.; Hsu, Y.-C.; Lin, H.-F. Risk analysis for dam overtopping—Feitsui reservoir as a case study. J. Hydraul. Eng. 2007, 133, 955–963. [Google Scholar] [CrossRef]
- Chow, M.; Shiah, F.; Lai, C.; Kuo, H.; Wang, K.; Lin, C.; Chen, T.; Kobayashi, Y.; Ko, C. Evaluation of surface water quality using multivariate statistical techniques: A case study of Fei-Tsui Reservoir basin, Taiwan. Environ. Earth Sci. 2016, 75, 1–15. [Google Scholar] [CrossRef]
- Sapitang, M.; Ridwan, W.M.; Faizal Kushiar, K.; Najah Ahmed, A.; El-Shafie, A. Machine Learning Application in Reservoir Water Level Forecasting for Sustainable Hydropower Generation Strategy. Sustainability 2020, 12, 6121. [Google Scholar] [CrossRef]
- Chang, F.-J.; Chang, Y.-T. Adaptive neuro-fuzzy inference system for prediction of water level in reservoir. Adv. Water Resour. 2006, 29, 1–10. [Google Scholar] [CrossRef]
- Ehteram, M.; Ferdowsi, A.; Faramarzpour, M.; Al-Janabi, A.M.S.; Al-Ansari, N.; Bokde, N.D.; Yaseen, Z.M. Hybridization of artificial intelligence models with nature inspired optimization algorithms for lake water level prediction and uncertainty analysis. Alex. Eng. J. 2021, 60, 2193–2208. [Google Scholar] [CrossRef]
- Zubaidi, S.L.; Al-Bugharbee, H.; Muhsin, Y.R.; Hashim, K.; Alkhaddar, R. Forecasting of monthly stochastic signal of urban water demand: Baghdad as a case study. IOP Conf. Ser. Mater. Sci. Eng. 2020, 888, 012018. [Google Scholar] [CrossRef]
- Zubaidi, S.L.; Abdulkareem, I.H.; Hashim, K.S.; Al-Bugharbee, H.; Ridha, H.M.; Gharghan, S.K.; Al-Qaim, F.F.; Muradov, M.; Kot, P.; Al-Khaddar, R. Hybridised artificial neural network model with slime mould algorithm: A novel methodology for prediction of urban stochastic water demand. Water 2020, 12, 2692. [Google Scholar] [CrossRef]
- Mu, L.; Zheng, F.; Tao, R.; Zhang, Q.; Kapelan, Z. Hourly and daily urban water demand predictions using a long short-term memory based model. J. Water Resour. Plan. Manag. 2020, 146, 05020017. [Google Scholar] [CrossRef]
- Palmer, W.C. Meteorological Drought; US Department of Commerce, Weather Bureau: Silver Spring, MD, USA, 1965; Volume 30.
- McKee, T.B.; Doesken, N.J.; Kleist, J. The relationship of drought frequency and duration to time scales. In Proceedings of the 8th Conference on Applied Climatology, Anaheim, CA, USA, 17–22 January 1993; Volume 17, pp. 179–183. [Google Scholar]
- Vicente-Serrano, S.M.; Beguería, S.; López-Moreno, J.I. A multiscalar drought index sensitive to global warming: The standardized precipitation evapotranspiration index. J. Clim. 2010, 23, 1696–1718. [Google Scholar] [CrossRef] [Green Version]
- Yu, M.; Li, Q.; Hayes, M.J.; Svoboda, M.D.; Heim, R.R. Are droughts becoming more frequent or severe in China based on the standardized precipitation evapotranspiration index: 1951–2010? Int. J. Climatol. 2014, 34, 545–558. [Google Scholar] [CrossRef] [Green Version]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Ho, T.K. Random decision forests. In Proceedings of the 3rd International Conference on Document Analysis and Recognition, Montreal, QC, Canada, 14–16 August 1995; Volume 1, pp. 278–282. [Google Scholar]
- Zhang, W.; Wu, C.; Zhong, H.; Li, Y.; Wang, L. Prediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization. Geosci. Front. 2021, 12, 469–477. [Google Scholar] [CrossRef]
- Quinlan, J.R. Learning with Continuous Classes V: 5th Australian Joint Conference on Artificial Intelligence; Adams, A., Sterling, L., Eds.; Hobart: Tasmania, Australia, 1992; Volume 92, pp. 343–348. [Google Scholar] [CrossRef]
- Wang, S.; Huang, G.; He, L. Development of a clusterwise-linear-regression-based forecasting system for characterizing DNAPL dissolution behaviors in porous media. Sci. Total Environ. 2012, 433, 141–150. [Google Scholar] [CrossRef]
- Niu, W.-J.; Feng, Z.-K.; Feng, B.-F.; Min, Y.-W.; Cheng, C.-T.; Zhou, J.-Z. Comparison of multiple linear regression, artificial neural network, extreme learning machine, and support vector machine in deriving operation rule of hydropower reservoir. Water 2019, 11, 88. [Google Scholar] [CrossRef] [Green Version]
- Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn. 1995, 20, 273–297. [Google Scholar] [CrossRef]
- Mohammadi, B.; Guan, Y.; Aghelpour, P.; Emamgholizadeh, S.; Pillco Zolá, R.; Zhang, D. Simulation of Titicaca lake water level fluctuations using hybrid machine learning technique integrated with grey wolf optimizer algorithm. Water 2020, 12, 3015. [Google Scholar] [CrossRef]
- Mohammadi, B.; Mehdizadeh, S. Modeling daily reference evapotranspiration via a novel approach based on support vector regression coupled with whale optimization algorithm. Agric. Water Manag. 2020, 237, 106145. [Google Scholar] [CrossRef]
- Ibañez, S.C.; Dajac, C.V.G.; Liponhay, M.P.; Legara, E.F.T.; Esteban, J.M.H.; Monterola, C.P. Forecasting reservoir water levels using deep neural networks: A case study of Angat Dam in the Philippines. Water 2021, 14, 34. [Google Scholar] [CrossRef]
- Brock, W.; Lakonishok, J.; LeBaron, B. Simple technical trading rules and the stochastic properties of stock returns. J. Financ. 1992, 47, 1731–1764. [Google Scholar] [CrossRef]
- Fifield, S.; Power, D.; Knipe, D. The performance of moving average rules in emerging stock markets. Appl. Financ. Econ. 2008, 18, 1515–1532. [Google Scholar] [CrossRef]
- Güldal, V.; Tongal, H. Comparison of recurrent neural network, adaptive neuro-fuzzy inference system and stochastic models in Eğirdir Lake level forecasting. Water Resour. Manag. 2010, 24, 105–128. [Google Scholar] [CrossRef]
- Liang, C.; Li, H.; Lei, M.; Du, Q. Dongting lake water level forecast and its relationship with the three gorges dam based on a long short-term memory network. Water 2018, 10, 1389. [Google Scholar] [CrossRef]
Variables | Definition |
---|---|
x1(t − k), …, x1(t): Daily water level | Feitsui Reservoir daily historical water level |
x2(t − k), …, x2(t): Daily rainfall | Historical mean daily rainfall in the catchment |
x3(t − k), …, x3(t): Daily inflow – daily outflow | Reservoir daily historical inflow minus release flow |
y1(t + 1): Predicted water level at next day | y1(t + 1) = f1(x1(t − k), …, x1(t), x2(t − m), …, x2(t), x3(t − n), …, x3(t)) |
y2(t + 30): Predicted water level at next 30th day | y2(t + 30) = f2(x1(t − k), …, x1(t), x2(t − m), …, x2(t), x3(t − n), …, x3(t)) |
y3(t + 90): Predicted water level at next 90th day | y3(t + 90) = f3(x1(t − k), …, x1(t), x2(t − m), …, x2(t), x3(t − n), …, x3(t)) |
y4(t + 180): Predicted water level at next 180th day | y4(t + 180) = f4(x1(t − k), …, x1(t), x2(t − m), …, x2(t), x3(t − n), …, x3(t)) |
Variables | Definition |
---|---|
z1(t − k), …, z1(t): Domestic water consumption | Daily historical total domestic water consumption (liters/person/day) |
y5(t + 1): Estimated domestic water consumption | Total domestic water consumption per person at time t + 1 (in liters/person/day) |
y6(t + 1): Estimated remaining days of water use | The remaining days of domestic water at time t + 1 |
Method | R2 | RMSE | MAE | MAPE |
---|---|---|---|---|
SVR | 0.9980 | 0.2234 | 0.1255 | 0.0772 |
M5P | 0.9968 | 0.3660 | 0.1173 | 0.1174 |
RF | 0.9943 | 0.5825 | 0.2612 | 0.2615 |
MLR | 0.8464 | 2.8235 | 1.3218 | 1.3229 |
Model | R2 | RMSE | MAE | MAPE |
---|---|---|---|---|
SVR 30 day | 0.9364 | 1.3185 | 0.7363 | 0.4633 |
SVR 90 day | 0.762 | 3.1978 | 2.7542 | 1.6921 |
SVR 180 day | 0.3611 | 5.7291 | 4.9457 | 3.0306 |
Algorithm | R2 | RMSE | MAE | MAPE | Time |
---|---|---|---|---|---|
SVR | 0.9980 | 0.2234 | 0.1255 | 0.0772 | 120 s |
GRU | 0.9568 | 1.0912 | 0.8207 | 0.8174 | 362 s |
LSTM | 0.9708 | 0.8101 | 0.772 | 0.728 | 650 s |
MLP | 0.9861 | 0.5357 | 0.3226 | 0.4615 | 318 s |
Authors | Duration | R2 | RMSE | MAE | MAPE |
---|---|---|---|---|---|
Chang and Chang [20] | 3 h | - | 0.597 | 0.436 | - |
Güldal and Tongal [41] | 30 day | 0.97 | 0.126 | - | - |
Liang et al. [42] | 1 day | 0.999 | 0.083 | - | - |
Zhu et al. [9] | 30 day | 0.83 | 0.0515 | - | - |
Ibañez et al. [38] | 1 day | 0.9990 | 0.1980 | 0.1980 | 0.0010 |
30 day | 0.9100 | 3.2730 | 2.8920 | 0.0150 | |
90 day | 0.7460 | 5.9620 | 5.1030 | 0.0270 | |
180 day | 0.5810 | 8.1280 | 6.6520 | 0.0360 | |
Our Study | 1 day | 0.9980 | 0.1934 | 0.0772 | 0.0770 |
30 day | 0.9364 | 1.3185 | 0.7363 | 0.4633 | |
90 day | 0.762 | 3.1978 | 2.7542 | 1.6921 | |
180 day | 0.3611 | 5.7291 | 4.9457 | 3.0306 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shih, D.-H.; Liao, C.-H.; Wu, T.-W.; Chang, H.-S.; Shih, M.-H. WSI: A New Early Warning Water Survival Index for the Domestic Water Demand. Mathematics 2022, 10, 4478. https://doi.org/10.3390/math10234478
Shih D-H, Liao C-H, Wu T-W, Chang H-S, Shih M-H. WSI: A New Early Warning Water Survival Index for the Domestic Water Demand. Mathematics. 2022; 10(23):4478. https://doi.org/10.3390/math10234478
Chicago/Turabian StyleShih, Dong-Her, Ching-Hsien Liao, Ting-Wei Wu, Huan-Shuo Chang, and Ming-Hung Shih. 2022. "WSI: A New Early Warning Water Survival Index for the Domestic Water Demand" Mathematics 10, no. 23: 4478. https://doi.org/10.3390/math10234478
APA StyleShih, D. -H., Liao, C. -H., Wu, T. -W., Chang, H. -S., & Shih, M. -H. (2022). WSI: A New Early Warning Water Survival Index for the Domestic Water Demand. Mathematics, 10(23), 4478. https://doi.org/10.3390/math10234478