New Coronavirus (2019-nCov) Mathematical Model Using Piecewise Hybrid Fractional Order Derivatives; Numerical Treatments †
Abstract
:1. Introduction
2. Fractional Order Operator Definitions
2.1. Fractional Gaussian Noise and Fractional Brownian Motion
2.2. Modified Euler–Maruyama Technique
3. Fractional Stochastic–Deterministic Model
4. Analysis of the Model
4.1. Basic Reproduction Number
4.2. Uniqueness and Existence
5. Numerical Procedure for Piecewise Model
Mean Square Stability of the CPC-NMEMM
6. Numerical Simulations
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kumar, S.; Kumar, R.; Osman, M.S.; Samet, B. A wavelet based numerical scheme for fractional order SEIR epidemic of measles by using Genocchi polynomials. Numer. Methods Partial. Differ. Equ. 2021, 37, 1250–1268. [Google Scholar] [CrossRef]
- Sweilam, N.H.; Al-Mekhlafi, S.M. Nonstandard theta Milstein method for solving stochastic multi-strain tuberculosis model. J. Egypt. Math. Soc. 2020, 28, 12. [Google Scholar] [CrossRef] [Green Version]
- Sweilam, N.H.; Hasan, M.M.A.; Al-Mekhlafi, S.M. On variable order Salmonella bacterial infection mathematical model. Math. Methods Appl. Sci. 2022. [CrossRef]
- Adedire, O.; Ndam, J.N. A model of dual latency compartments for the transmission dynamics of COVID-19 in Oyo state, Nigeria. Eng. Appl. Sci. Lett. 2021, 4, 1–13. [Google Scholar] [CrossRef]
- Zhou, J.-C.; Salahshour, S.; Ahmadian, A.; Senu, N. Modeling the dynamics of COVID-19 using a fractal-fractional operator with a case study. Results Phys. 2021, 33, 105103. [Google Scholar] [CrossRef] [PubMed]
- Shymanskyi, V.; Sokolovskyy, Y. Finite element calculation of the linear elasticity problem for biomaterials with fractal structure. Open Bioinform. J. 2021, 14, 114–122. [Google Scholar] [CrossRef]
- Sweilam, N.H.; AL-Mekhlafi, S.M.A.; Baleanu, D. A hybrid fractional optimal control for a novel Coronavirus (2019-nCov) mathematical model. J. Adv. Res. 2021, 32, 149–160. [Google Scholar] [CrossRef]
- Sweilam, N.H.; AL-Mekhlafi, S.M.A.; Baleanu, D. A hybrid stochastic fractional order Coronavirus (2019-nCov) mathematical model. Chaos Solitons Fractals 2021, 145, 110762. [Google Scholar] [CrossRef]
- Carvalho, A.R.M.; Pinto, C.M.A. Non-integer order analysis of the impact of diabetes and resistant strains in a model for TB infection. Commun. Nonlinear Sci. Numer. Simul. 2018, 61, 104–126. [Google Scholar] [CrossRef]
- Al-Raeei, M. The incubation periods, the critical immunisation threshold and some other predictors of SARS-CoV-2 disease for different location and different climate countries. Eng. Appl. Sci. Lett. 2021, 4, 36–42. [Google Scholar] [CrossRef]
- Atangana, A.; Araz, S.İ. Modeling third waves of covid-19 spread with piecewise differential and integral operators: Turkey, spain and czechia. Results Phys. 2021, 29, 104694. [Google Scholar] [CrossRef]
- Atangana, A.; Araz, S.İ. Deterministic-Stochastic modeling: A new direction in modeling real world problems with crossover effect. Math. Biosci. Eng. 2022, 19, 3526–3563. [Google Scholar] [PubMed]
- Atangana, A.; Araz, S.İ. New concept in calculus: Piecewise differential and integral operators. Chaos Solitons Fractals 2021, 145, 110638. [Google Scholar] [CrossRef]
- Sweilam, N.H.; Al-Mekhlafi, S.M.; Hassan, S.M.; Alsenaideh, N.R.; Radwan, A.E. Numerical treatments for some stochastic-deterministic chaotic systems. Results Phys. 2022, 38, 105628. [Google Scholar] [CrossRef]
- Atangana, A.; Koca, I. Modeling the Spread of Tuberculosis with Piecewise Differential Operators. Comput. Model. Eng. Sci. 2022, 131, 787–814. [Google Scholar] [CrossRef]
- Li, X.; DarAssi, M.H.; Khan, M.A.; Chukwu, C.W.; Alshahrani, M.Y.; al Shahrani, M.; Riaz, M.B. Assessing the potential impact of COVID-19 Omicron variant: Insight through a fractional piecewise model. Results Phys. 2022, 38, 105652. [Google Scholar] [CrossRef] [PubMed]
- Li, X.-P.; Alrihieli, H.F.; Algehyne, E.A.; Khan, M.A.; Alshahrani, M.Y.; Alraey, Y.; Riaz, M.B. Application of piecewise fractional differential equation to COVID-19 infection dynamics. Results Phys. 2022, 39, 105685. [Google Scholar] [CrossRef]
- Sweilam, N.H.; Al-Ajami, T.M. Legendre spectral-collocation method for solving some types of fractional optimal control problems. J. Adv. Res. 2015, 6, 393–403. [Google Scholar] [CrossRef] [Green Version]
- Baleanu, D.; Fernandez, A.; Akgül, A. On a fractional operator combining proportional and classical differintegrals. Mathematics 2020, 8, 360. [Google Scholar] [CrossRef] [Green Version]
- Jumarie, G. On the representation of fractional Brownian motion as an integral with respect to (dt)a. Appl. Math. Lett. 2005, 18, 739–748. [Google Scholar] [CrossRef]
- Hu, Y.; Liu, Y.; Nualart, D. Rate of convergence and asymptotic error distribution of Euler approximation schemes for fractional diffusions. Ann. Appl. Probab. 2016, 26, 1147–1207. [Google Scholar] [CrossRef] [Green Version]
- Hu, Y.; Liu, Y.; Nualart, D. Modified Euler approximation scheme for stochastic differential equations driven by fractional Brownian motions. arXiv 2013. [CrossRef]
- Liu, W.; Jiang, Y.; Li, Z. Rate of convergence of Euler approximation of time-dependent mixed SDEs driven by Brownian motions and fractional Brownian motions. AIMS Math. 2020, 5, 2163–2195. [Google Scholar] [CrossRef]
- Shevchenko, G. Fractional Brownian motion in a nutshell. Int. J. Mod. Phys. Conf. Ser. 2015, 36, 1560002. [Google Scholar] [CrossRef] [Green Version]
- Ndärou, F.; Area, I.; Nieto, J.J.; Torres, D.F.M. Mathematical modeling of COVID-19 transmission dynamics with a case study of Wuhan. Chaos Solitons Fractals 2020, 135, 109846. [Google Scholar] [CrossRef] [PubMed]
- Ullah, M.Z.; Baleanu, D. A new fractional SICA model and numerical method for the trans237 mission of HIV/AIDS. Math. Methods Appl. Sci. 2021, 44, 8648–8659. [Google Scholar] [CrossRef]
- Lin, W. Global existence theory and chaos control of fractional differential equations. J. Math. Anal. Appl. 2007, 332, 709–726. [Google Scholar] [CrossRef] [Green Version]
- van den Driessche, P.; Watmough, J. Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math. Biosci. 2002, 180, 29–48. [Google Scholar] [CrossRef]
- Fosu, G.O.; Akweittey, E.; Adu-sackey, A. Next-generation matrices and basic reproductive numbers for all phases of the Coronavirus disease. Open J. Math. Sci. 2020, 4, 261–272. [Google Scholar] [CrossRef]
- Bonyah, E.; Sagoe, A.K.; Kumar, D.; Deniz, S. Fractional optimal control dynamics of Coronavirus model with Mittag-Leffler law. Ecol. Complex. 2020, 45, 100880. [Google Scholar] [CrossRef]
- Mickens, R. Nonstandard Finite Difference Models of Differential Equations; World Scientific: Singapore, 1994. [Google Scholar]
- Scherer, R.; Kalla, S.; Tang, Y.; Huang, J. The Grünwald-Letnikov method for fractional differential equations. Comput. Math. Appl. 2011, 62, 902–917. [Google Scholar] [CrossRef] [Green Version]
- Talay, D.; Tubaro, L. Expansion of the global error for numerical schemes solving stochastic differential equations. Stoch. Anal. Appl. 1990, 8, 483–509. [Google Scholar] [CrossRef]
- Ndärou, F.; Area, I.; Nieto, J.J.; Silva, C.J.; Torres, D.F.M. Fractional model of COVID-1 applied to Galicia, Spain and Portugal. Chaos Solitons Fractals 2021, 144, 110652. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sweilam, N.H.; AL-Mekhlafi, S.M.; Hassan, S.M.; Alsenaideh, N.R.; Radwan, A.E. New Coronavirus (2019-nCov) Mathematical Model Using Piecewise Hybrid Fractional Order Derivatives; Numerical Treatments. Mathematics 2022, 10, 4579. https://doi.org/10.3390/math10234579
Sweilam NH, AL-Mekhlafi SM, Hassan SM, Alsenaideh NR, Radwan AE. New Coronavirus (2019-nCov) Mathematical Model Using Piecewise Hybrid Fractional Order Derivatives; Numerical Treatments. Mathematics. 2022; 10(23):4579. https://doi.org/10.3390/math10234579
Chicago/Turabian StyleSweilam, Nasser H., Seham M. AL-Mekhlafi, Saleh M. Hassan, Nehaya R. Alsenaideh, and Abdelaziz Elazab Radwan. 2022. "New Coronavirus (2019-nCov) Mathematical Model Using Piecewise Hybrid Fractional Order Derivatives; Numerical Treatments" Mathematics 10, no. 23: 4579. https://doi.org/10.3390/math10234579
APA StyleSweilam, N. H., AL-Mekhlafi, S. M., Hassan, S. M., Alsenaideh, N. R., & Radwan, A. E. (2022). New Coronavirus (2019-nCov) Mathematical Model Using Piecewise Hybrid Fractional Order Derivatives; Numerical Treatments. Mathematics, 10(23), 4579. https://doi.org/10.3390/math10234579