Some Inequalities of Hardy Type Related to Witten–Laplace Operator on Smooth Metric Measure Spaces
Abstract
:1. Introduction
2. Hardy-Type Inequalities Related to Witten–Laplacian
Heisenberg–Pauli–Weyl Uncertainty Principle on Smooth Metric Measure Spaces
3. Integral Inequalities Related to Witten p-LAPLACIAN
Brief Discussion on the Proof of the Last Two Results
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hardy, G.; Littlewood, J.E.; Polya, G. Inequalities; Cambridge University Press: Cambridge, UK, 1934. [Google Scholar]
- Abolarinwa, A.; Rauf, K.; Yin, S. Sharp Lp Hardy and uncertainty principle inequalities on the sphere. J. Math. Inequal. 2019, 13, 1011–1022. [Google Scholar] [CrossRef] [Green Version]
- D’Ambrosio, L. Hardy-type inequalities related to degenerate elliptic differential operators. Ann. Della Sc. Norm. Super. Pisa-Cl. Sci. 2005, 5, 451–486. [Google Scholar] [CrossRef]
- Azorero, J.P.G.; Alonso, I.P. Hardy inequalities and some critical elliptic and parabolic Problems. J. Differ. Equ. 1998, 144, 441–476. [Google Scholar] [CrossRef] [Green Version]
- Xia, C. Hardy and Rellich type inequalities on complete manifolds. J. Math. Anal. Appl. 2014, 409, 84–90. [Google Scholar] [CrossRef]
- Abolarinwa, A.; Apata, T. Lp-Hardy-Rellich and uncertainty principle inequalities on the sphere. Adv. Oper. Theory 2018, 3, 745–762. [Google Scholar] [CrossRef]
- Abolarinwa, A.; Rauf, K. Optimal Lp Hardy-Rellich type inequalities on the sphere. Math. Inequal. Appl. 2020, 23, 307–315. [Google Scholar] [CrossRef] [Green Version]
- Brezis, H.; Vázquez, J.L. Blow-up solutions of some nonlinear elliptic problems. Rev. Mat. Univ. Comp. Madr. 1997, 10, 443–469. [Google Scholar]
- Davies, E.B.; Hinz, A.M. Explicit constants for Rellich inequalities in Lp(Ω). Math. Z. 1998, 227, 511–532. [Google Scholar] [CrossRef]
- D’Ambrosio, L.; Dipierro, S. Hardy inequalities on Riemannian and Applications. Ann. l’Institut Henri Poincaré Non Linear Anal. 2014, 31, 449–475. [Google Scholar] [CrossRef]
- Mitidieri, E. A simple approach to Hardy inequalities. Math. Notes 2000, 67, 479–486. [Google Scholar] [CrossRef]
- Saker, S.H.; Rezk, H.M.; Abohela, I.; Baleanu, D. Refinement multidimensional dynamic inequalities with general kernels and measures. J. Inequal. Appl. 2019, 306, 1–16. [Google Scholar] [CrossRef]
- Tertikas, A.; Zographopoulos, N. Best constants in the Hardy-Rellich Inequalities and Related Improvements. Adv. Math. 2007, 209, 407–459. [Google Scholar] [CrossRef] [Green Version]
- Crespo, J.A.A.; Alonso, I.P. Global behaviour of the Cauchy problem for some critical nonlinear parabolic equations. SIAM J. Math. Anal. 2000, 31, 1270–1294. [Google Scholar] [CrossRef]
- Goldstein, J.A.; Kombe, I. Nonlinear degenerate parabolic equations with singular lower order term. Adv. Differ. Equ. 2003, 10, 1153–1192. [Google Scholar]
- Carron, G. Inégalités de Hardy sur les vari ét és riemanniennes non-compactes. J. Math. Pures Appl. 1997, 76, 883–891. [Google Scholar] [CrossRef] [Green Version]
- Kombe, I.; Özaydin, M. Improved Hardy and Rellich inequalities on Riemannian manifolds. Trans. Am. Math. Soc. 2009, 361, 6191–6203. [Google Scholar] [CrossRef]
- Kombe, I.; Özaydin, M. Hardy-Poincaré, Rellich and uncertainty principle inequalities on Riemannian manifolds. Trans. Am. Math. Soc. 2013, 365, 5035–5050. [Google Scholar] [CrossRef]
- Kombe, I.; Yener, A. Weighted Hardy and Rellich type inequalities on Riemannian manifolds. Math. Nachrichten 2016, 289, 994–1004. [Google Scholar] [CrossRef]
- Yang, Q.; Su, D.; Kong, Y. Hardy inequalities on Riemannian manifolds with negative curvature. Commun. Contemp. Math. 2014, 16, 1350043. [Google Scholar] [CrossRef]
- D’Ambrosio, L. Some Hardy Inequalities on the Heisenberg Group. Differ. Equ. 2004, 40, 552–564. [Google Scholar] [CrossRef]
- Nguyen, V.H. New sharp Hardy and Rellich type inequalities on Cartan-Hadamard manifolds and their improvements. Proc. R. Soc. A 2020, 150, 2952–2981. [Google Scholar] [CrossRef]
- Kristály, A.; Ohta, S. Caffarelli-Kohn-Nirenberg inequality on metric measure spaces with applications. Math. Ann. 2013, 357, 711–726. [Google Scholar] [CrossRef]
- Ruzhansky, M.; Verma, D. Hardy inequalities on metric measure spaces. Proc. R. Soc. A 2019, 475, 20180310. [Google Scholar] [CrossRef] [Green Version]
- Duy, N.T. Some Hardy type inequalities with Finsler norms. Math. Slovaca 2021, 71, 317–330. [Google Scholar] [CrossRef]
- Mester, A.; Peter, I.R.; Varga, C. Sufficient criteria for obtaining Hardy inequalities on Finsler manifolds. Mediterr. J. Math. 2021, 18, 1–22. [Google Scholar] [CrossRef]
- Zhao, W. Hardy inequalities with best constants on Finsler metric measure manifolds. J. Geom. Anal. 2021, 31, 1992–2032. [Google Scholar] [CrossRef] [Green Version]
- Sekar, A. Role of the fundamental solution in Hardy-Sobolev-type inequalities. Proc. R. Soc. Edinb. Sect. A Math. 2006, 136, 1111–1130. [Google Scholar]
- Wei, G.F.; Wylie, W. Comparison geometry for the Bakry-Émery Ricci tensor. J. Differ. Geom. 2009, 83, 377–405. [Google Scholar] [CrossRef]
- Kristály, A. Sharp uncertainty principles of Riemannian manifols: The influence of curvature. J. Math. Pures Appl. 2018, 119, 326–346. [Google Scholar] [CrossRef] [Green Version]
- Bakry, D.; Gentil, I.; Ledoux, M. Analysis and Geometry of Markov Diffusion Operators; A Series of Comprehensive Studies in Mathematics; Springer: Berlin/Heidelberg, Germany, 2012; Volume 348. [Google Scholar]
- Abolarinwa, A.; Taheri, A. Geometric estimates on weighted p-fundamental tone and applications to the first eigenvalue of a submanifold with bounded mean curvature. Complex Var. Elliptic Equ. 2022, 67, 1379–1392. [Google Scholar] [CrossRef]
- Mao, F.D.J.; Wang, Q.; Wu, C. The Hardy type inequality on metric measure spaces. J. Korean Math. Soc. 2018, 55, 1359–1380. [Google Scholar]
- Andriano, L.; Xia, C. Hardy type inequalities on complete Riemannian manifolds. Monatshefte Math. 2011, 163, 115–129. [Google Scholar] [CrossRef]
- Du, F.; Mao, J. Hardy and Rellich type inequalities on metric measure spaces. J. Math. Anal. Appl. 2014, 429, 345–365. [Google Scholar] [CrossRef]
- Meng, C.; Wang, H.; Zhao, W. Hardy type inequalities on closed manifolds via Ricci curvature. Proc. R. Soc. Edinb. Sect. A Math. 2021, 151, 993–1020. [Google Scholar] [CrossRef]
- Li, Y.; Mofarreh, F.; Agrawal, R.P.; Ali, A. Reilly-type inequality for the ϕ-Laplace operator on semislant submanifolds of Sasakian space forms. J. Inequal. Appl. 2022, 1, 102. [Google Scholar] [CrossRef]
- Li, Y.; Mofarreh, F.; Dey, S.; Roy, S.; Ali, A. General Relativistic Space-Time with η1-Einstein Metrics. Mathematics 2022, 10, 2530. [Google Scholar] [CrossRef]
- Li, Y.; Mofarreh, F.; Abdel-Baky, R.A. Timelike Circular Surfaces and Singularities in Minkowski 3-Space. Symmetry 2022, 14, 1914. [Google Scholar] [CrossRef]
- Niu, P.; Zhang, H.; Wang, Y. Hardy type and Rellich type inequalities on the Heisenberg group. Proc. Am. Math. Soc. 2001, 129, 3623–3630. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Abolarinwa, A.; Alkhaldi, A.H.; Ali, A. Some Inequalities of Hardy Type Related to Witten–Laplace Operator on Smooth Metric Measure Spaces. Mathematics 2022, 10, 4580. https://doi.org/10.3390/math10234580
Li Y, Abolarinwa A, Alkhaldi AH, Ali A. Some Inequalities of Hardy Type Related to Witten–Laplace Operator on Smooth Metric Measure Spaces. Mathematics. 2022; 10(23):4580. https://doi.org/10.3390/math10234580
Chicago/Turabian StyleLi, Yanlin, Abimbola Abolarinwa, Ali H. Alkhaldi, and Akram Ali. 2022. "Some Inequalities of Hardy Type Related to Witten–Laplace Operator on Smooth Metric Measure Spaces" Mathematics 10, no. 23: 4580. https://doi.org/10.3390/math10234580
APA StyleLi, Y., Abolarinwa, A., Alkhaldi, A. H., & Ali, A. (2022). Some Inequalities of Hardy Type Related to Witten–Laplace Operator on Smooth Metric Measure Spaces. Mathematics, 10(23), 4580. https://doi.org/10.3390/math10234580