Anti-Disturbance Fault-Tolerant Constrained Consensus for Time-Delay Faulty Multi-Agent Systems with Semi-Markov Switching Topology
Abstract
:1. Introduction
2. Preliminaries and Problem Formulation
2.1. Graph Theory
2.2. Problem Formulation
3. Distributed Fault-Tolerant Protocol Design
4. Main Result
- if , .
- if , .
5. Numerical Example
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Appendix B
References
- Yang, R.; Wang, L. Development of multi-agent system for building energy and comfort management based on occupant behaviors. Energy Build. 2013, 56, 1–7. [Google Scholar] [CrossRef]
- Pipattanasomporn, M.; Feroze, H.; Rahman, S. Multi-agent systems in a distributed smart grid: Design and implementation. In Proceedings of the IEEE/PES Power Systems Conference and Exposition, Seattle, WA, USA, 15–18 March 2009; pp. 1–8. [Google Scholar]
- Adler, J.L.; Satapathy, G.; Manikonda, V.; Bowles, B.; Blue, V.J. A multi-agent approach to cooperative traffic management and route guidance. Transp. Res. Part Methodol. 2005, 39, 297–318. [Google Scholar] [CrossRef]
- Yan, Z.; Yang, Z.; Yue, L.; Wang, L.; Jia, H.; Zhou, J. Discrete-time coordinated control of leader-following multiple AUVs under switching topologies and communication delays. Ocean. Eng. 2019, 172, 361–372. [Google Scholar] [CrossRef]
- Jin, X.; Wang, S.; Qin, J.; Zheng, W.X.; Kang, Y. Adaptive fault-tolerant consensus for a class of uncertain nonlinear second-order multi-agent systems with circuit implementation. IEEE Trans. Circuits Syst. I Regul. Pap. 2017, 65, 2243–2255. [Google Scholar] [CrossRef]
- Nedic, A.; Ozdaglar, A.; Parrilo, P.A. Constrained consensus and optimization in multi-agent networks. IEEE Trans. Autom. Control. 2010, 55, 922–938. [Google Scholar] [CrossRef]
- Ren, W.; Beard, R.W. Consensus algorithms for double-integrator dynamics. In Distributed Consensus in Multi-Vehicle Cooperative Control: Theory and Applications; Springer: Berlin/Heidelberg, Germany, 2008; pp. 77–104. [Google Scholar]
- Lin, P.; Ren, W.; Yang, C.; Gui, W. Distributed consensus of second-order multiagent systems with nonconvex velocity and control input constraints. IEEE Trans. Autom. Control. 2017, 63, 1171–1176. [Google Scholar] [CrossRef]
- Lin, P.; Ren, W. Distributed H∞ constrained consensus problem. Syst. Control. Lett. 2017, 104, 45–48. [Google Scholar] [CrossRef]
- Li, H.; Lü, Q.; Huang, T. Convergence analysis of a distributed optimization algorithm with a general unbalanced directed communication network. IEEE Trans. Netw. Sci. Eng. 2018, 6, 237–248. [Google Scholar] [CrossRef]
- Margellos, K.; Falsone, A.; Garatti, S.; Prandini, M. Distributed constrained optimization and consensus in uncertain networks via proximal minimization. IEEE Trans. Autom. Control. 2017, 63, 1372–1387. [Google Scholar] [CrossRef] [Green Version]
- Shen, H.; Park, J.H.; Wu, Z.G.; Zhang, Z. Finite-time H∞ synchronization for complex networks with semi-Markov jump topology. Commun. Nonlinear Sci. Numer. Simul. 2015, 24, 40–51. [Google Scholar] [CrossRef]
- Liang, K.; Dai, M.; Shen, H.; Wang, J.; Wang, Z.; Chen, B. L2-L∞ synchronization for singularly perturbed complex networks with semi-Markov jump topology. Appl. Math. Comput. 2018, 321, 450–462. [Google Scholar] [CrossRef]
- Li, J.N.; Pan, Y.J.; Su, H.Y.; Wen, C.L. Stochastic reliable control of a class of networked control systems with actuator faults and input saturation. Int. J. Control. Autom. Syst. 2014, 12, 564–571. [Google Scholar] [CrossRef]
- Li, J.N.; Bao, W.D.; Li, S.B.; Wen, C.L.; Li, L.S. Exponential synchronization of discrete-time mixed delay neural networks with actuator constraints and stochastic missing data. Neurocomputing 2016, 207, 700–707. [Google Scholar] [CrossRef]
- Li, J.N.; Li, L.S. Reliable control for bilateral teleoperation systems with actuator faults using fuzzy disturbance observer. IET Control. Theory Appl. 2017, 11, 446–455. [Google Scholar] [CrossRef]
- Li, J.N.; Xu, Y.F.; Gu, K.Y.; Li, L.S.; Xu, X.B. Mixed passive/H∞ hybrid control for delayed Markovian jump system with actuator constraints and fault alarm. Int. J. Robust Nonlinear Control. 2018, 28, 6016–6037. [Google Scholar] [CrossRef]
- Fan, Q.Y.; Yang, G.H. Event-based fuzzy adaptive fault-tolerant control for a class of nonlinear systems. IEEE Trans. Fuzzy Syst. 2018, 26, 2686–2698. [Google Scholar] [CrossRef]
- Wu, C.; Liu, J.; Xiong, Y.; Wu, L. Observer-based adaptive fault-tolerant tracking control of nonlinear nonstrict-feedback systems. IEEE Trans. Neural Netw. Learn. Syst. 2017, 29, 3022–3033. [Google Scholar] [CrossRef]
- Liu, Y.; Ma, H. Adaptive fuzzy fault-tolerant control for uncertain nonlinear switched stochastic systems with time-varying output constraints. IEEE Trans. Fuzzy Syst. 2018, 26, 2487–2498. [Google Scholar] [CrossRef]
- Yazdani, S.; Haeri, M. Robust adaptive fault-tolerant control for leader-follower flocking of uncertain multi-agent systems with actuator failure. ISA Trans. 2017, 71, 227–234. [Google Scholar] [CrossRef] [PubMed]
- Yao, D.J.; Dou, C.X.; Yue, D.; Zhao, N.; Zhang, T.J. Adaptive neural network consensus tracking control for uncertain multi-agent systems with predefined accuracy. Nonlinear Dynamics 2020, 101(1), 243–255. [Google Scholar] [CrossRef]
- Wu, Y.; Zhao, Y.; Hu, J. Bipartite consensus control of high-order multiagent systems with unknown disturbances. IEEE Trans. Syst. Man, Cybern. Syst. 2017, 49, 2189–2199. [Google Scholar] [CrossRef]
- Wu, Y.; Hu, J.; Zhang, Y.; Zeng, Y. Interventional consensus for high-order multi-agent systems with unknown disturbances on coopetition networks. Neurocomputing 2016, 194, 126–134. [Google Scholar] [CrossRef]
- Ren, C.E.; Fu, Q.; Zhang, J.; Zhao, J. Adaptive event-triggered control for nonlinear multi-agent systems with unknown control directions and actuator failures. Nonlinear Dyn. 2021, 105, 1657–1672. [Google Scholar] [CrossRef]
- Wang, Q.S.; Duan, Z.S.; Wang, J.Y.; Wang, Q.; Chen, G. An accelerated algorithm for linear quadratic optimal consensus of heterogeneous multiagent systems. IEEE Trans. Autom. Control. 2022, 67, 421–428. [Google Scholar] [CrossRef]
- Li, X.B.; Yu, Z.H.; Li, Z.W.; Wu, N. Group consensus via pinning control for a class of heterogeneous multi-agent systems with input constraints. Inf. Sci. 2021, 542, 247–262. [Google Scholar] [CrossRef]
- Sun, J.; Geng, Z.; Lv, Y.; Li, Z.; Ding, Z. Distributed adaptive consensus disturbance rejection for multi-agent systems on directed graphs. IEEE Trans. Control. Netw. Syst. 2016, 5, 629–639. [Google Scholar] [CrossRef]
- Li, J.N.; Xu, Y.F.; Bao, W.D.; Li, Z.J.; Li, L.S. Finite-time non-fragile state estimation for discrete neural networks with sensor failures, time-varying delays and randomly occurring sensor nonlinearity. J. Frankl. Inst. 2019, 356, 1566–1589. [Google Scholar] [CrossRef]
- Li, J.; Li, Z.; Xu, Y.; Gu, K.; Bao, W.; Xu, X. Event-triggered non-fragile state estimation for discrete nonlinear Markov jump neural networks with sensor failures. Int. J. Control. Autom. Syst. 2019, 17, 1131–1140. [Google Scholar] [CrossRef]
- Li, J.N.; Liu, X.; Ru, X.F.; Xu, X. Disturbance rejection adaptive fault-tolerant constrained consensus for multi-agent systems with failures. IEEE Trans. Circuits Syst. II Express Briefs 2020, 67, 3302–3306. [Google Scholar] [CrossRef]
- Shen, H.; Wu, Z.G.; Park, J.H. Reliable mixed passive and filtering for semi-Markov jump systems with randomly occurring uncertainties and sensor failures. Int. J. Robust Nonlinear Control. 2015, 25, 3231–3251. [Google Scholar] [CrossRef]
- Zhou, Z.; Wang, X. Constrained consensus in continuous-time multiagent systems under weighted graph. IEEE Trans. Autom. Control. 2017, 63, 1776–1783. [Google Scholar] [CrossRef]
- Horn, R.A.; Johnson, C.R. Matrix Analysis; Cambridge University Press: Cambridge, UK, 2012. [Google Scholar]
- Xie, L. Output feedback H∞ control of systems with parameter uncertainty. Int. J. Control. 1996, 63, 741–750. [Google Scholar] [CrossRef]
- Liang, K.; He, W.; Xu, J.; Qian, F. Impulsive effects on synchronization of singularly perturbed complex networks with semi-Markov jump topologies. IEEE Trans. Syst. Man, Cybern. Syst. 2021, 52, 3163–3173. [Google Scholar] [CrossRef]
- Wen, G.H.; Duan, Z.S.; Yu, W.W.; Chen, G. Consensus in multi-agent systems with communication constraints. Int. J. Robust Nonlinear Control. 2012, 22, 170–182. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.; Zhang, F.; Li, J. Anti-Disturbance Fault-Tolerant Constrained Consensus for Time-Delay Faulty Multi-Agent Systems with Semi-Markov Switching Topology. Mathematics 2022, 10, 4581. https://doi.org/10.3390/math10234581
Chen Y, Zhang F, Li J. Anti-Disturbance Fault-Tolerant Constrained Consensus for Time-Delay Faulty Multi-Agent Systems with Semi-Markov Switching Topology. Mathematics. 2022; 10(23):4581. https://doi.org/10.3390/math10234581
Chicago/Turabian StyleChen, Yangjie, Fan Zhang, and Jianning Li. 2022. "Anti-Disturbance Fault-Tolerant Constrained Consensus for Time-Delay Faulty Multi-Agent Systems with Semi-Markov Switching Topology" Mathematics 10, no. 23: 4581. https://doi.org/10.3390/math10234581
APA StyleChen, Y., Zhang, F., & Li, J. (2022). Anti-Disturbance Fault-Tolerant Constrained Consensus for Time-Delay Faulty Multi-Agent Systems with Semi-Markov Switching Topology. Mathematics, 10(23), 4581. https://doi.org/10.3390/math10234581