Finite Element Analysis of Generalized Thermoelastic Interaction for Semiconductor Materials under Varying Thermal Conductivity
Abstract
:1. Introduction
2. Mathematical Model
3. Application
4. Numerical Solution (Finite Element Method)
5. Linear Cases (with Kirchhoff’s Transforms)
6. Analytical Solution
7. Discussion of Numerical Results
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- He, C.F.; Lu, G.G.; Shan, X.N.; Sun, Y.F.; Li, T.; Qin, L.; Yan, C.L.; Ning, Y.Q.; Wang, L.J. Theoretical analysis of 980 nm high power Vertical External-cavity Surface-emitting Semiconductor Laser (VECSEL). In Proceedings of the ICO20: Optical Devices and Instruments, Changchun, China, 21–26 August 2005; pp. 204–213. [Google Scholar]
- Todorović, D.M. Plasma, thermal, and elastic waves in semiconductors. Rev. Sci. Instrum. 2003, 74, 582–585. [Google Scholar] [CrossRef]
- Todorović, D.M. Photothermal and electronic elastic effects in microelectromechanical structures. Rev. Sci. Instrum. 2003, 74, 578–581. [Google Scholar] [CrossRef]
- Song, Y.; Cretin, B.; Todorovic, D.M.; Vairac, P. Study of photothermal vibrations of semiconductor cantilevers near the resonant frequency. J. Phys. D Appl. Phys. 2008, 41, 15516. [Google Scholar] [CrossRef]
- Lord, H.W.; Shulman, Y. A generalized dynamical theory of thermoelasticity. J. Mech. Phys. Solids 1967, 15, 299–309. [Google Scholar] [CrossRef]
- Marin, M.; Othman, M.I.A.; Abbas, I.A. An Extension of the Domain of Influence Theorem for Generalized Thermoelasticity of Anisotropic Material with Voids. J. Comput. Theor. Nanosci. 2015, 12, 1594–1598. [Google Scholar] [CrossRef]
- Ezzat, M.A.; El-Bary, A.A. Fractional magneto-thermoelastic materials with phase-lag Green-Naghdi theories. Steel Compos. Struct. 2017, 24, 297–307. [Google Scholar] [CrossRef]
- Abbas, I.A. Eigenvalue approach on fractional order theory of thermoelastic diffusion problem for an infinite elastic medium with a spherical cavity. Appl. Math. Model. 2015, 39, 6196–6206. [Google Scholar] [CrossRef]
- Abbas, I.A.; Abdalla, A.E.N.N.; Alzahrani, F.S.; Spagnuolo, M. Wave propagation in a generalized thermoelastic plate using eigenvalue approach. J. Therm. Stress. 2016, 39, 1367–1377. [Google Scholar] [CrossRef]
- Alharbi, A.M.; Said, S.M.; Abd-Elaziz, E.M.; Othman, M.I.A. Influence of Initial Stress and Variable Thermal Conductivity on a Fiber-Reinforced Magneto-Thermoelastic Solid with Micro-Temperatures by Multi-Phase-Lags Model. Int. J. Struct. Stab. Dyn. 2022, 22, 2250007. [Google Scholar] [CrossRef]
- Li, Y.; He, T. Investigation of a half-space heated by laser pulses based on the generalized thermoelastic theory with variable thermal material properties. Waves Random Complex Media 2022, 32, 120–136. [Google Scholar] [CrossRef]
- Abouelregal, A.E.; Tiwari, R. The thermoelastic vibration of nano-sized rotating beams with variable thermal properties under axial load via memory-dependent heat conduction. Meccanica 2022, 57, 2001–2025. [Google Scholar] [CrossRef]
- Li, C.L.; Tian, X.G.; He, T.H. Analytical study of transient thermo-mechanical responses in a fractional order generalized thermoelastic diffusion spherical shell with variable thermal conductivity and diffusivity. Waves Random Complex Media 2021, 31, 1083–1106. [Google Scholar] [CrossRef]
- Othman, M.I.A.; Zidan, M.E.M.; Mohamed, I.E.A. Dual-phase-lag model on thermo-microstretch elastic solid Under the effect of initial stress and temperature-dependent. Steel Compos. Struct. 2021, 38, 355–363. [Google Scholar] [CrossRef]
- Zhang, L.; Bhatti, M.M.; Michaelides, E.E.; Marin, M.; Ellahi, R. Hybrid nanofluid flow towards an elastic surface with tantalum and nickel nanoparticles, under the influence of an induced magnetic field. Eur. Phys. J. Spec. Top. 2021, 231, 521–533. [Google Scholar] [CrossRef]
- Scutaru, M.L.; Vlase, S.; Marin, M.; Modrea, A. New analytical method based on dynamic response of planar mechanical elastic systems. Bound. Value Probl. 2020, 2020, 104. [Google Scholar] [CrossRef]
- Abouelregal, A.E.; Marin, M. The response of nanobeams with temperature-dependent properties using state-space method via modified couple stress theory. Symmetry 2020, 12, 1276. [Google Scholar] [CrossRef]
- Hobiny, A.; Abbas, I.A. A study on the thermoelastic interaction in two-dimension orthotropic materials under the fractional derivative model. Alex. Eng. J. 2022, in press. [Google Scholar] [CrossRef]
- Alzahrani, F.; Hobiny, A.; Abbas, I.; Marin, M. An eigenvalues approach for a two-dimensional porous medium based upon weak, normal and strong thermal conductivities. Symmetry 2020, 12, 848. [Google Scholar] [CrossRef]
- Abouelregal, A.E.; Marin, M. The Size-Dependent Thermoelastic Vibrations of Nanobeams Subjected to Harmonic Excitation and Rectified Sine Wave Heating. Mathematics 2020, 8, 1128. [Google Scholar] [CrossRef]
- Ailawalia, P.; Kumar, A. Ramp Type Heating in a Semiconductor Medium under Photothermal Theory. Silicon 2019, 12, 347–356. [Google Scholar] [CrossRef]
- Abbas, I.A.; Alzahrani, F.S.; Elaiw, A. A DPL model of photothermal interaction in a semiconductor material. Waves Random Complex Media 2018, 29, 328–343. [Google Scholar] [CrossRef]
- Ghasemi, S.E.; Hatami, M.; Ganji, D.D. Thermal analysis of convective fin with temperature-dependent thermal conductivity and heat generation. Case Stud. Therm. Eng. 2014, 4, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Yang, W.; Zhang, L.; Zhang, H.; Wang, F.; Li, X. Numerical investigations of the effects of different factors on the displacement of energy pile under the thermo-mechanical loads. Case Stud. Therm. Eng. 2020, 21, 100711. [Google Scholar] [CrossRef]
- Lotfy, K.; Hassan, W.; El-Bary, A.A.; Kadry, M.A. Response of electromagnetic and Thomson effect of semiconductor medium due to laser pulses and thermal memories during photothermal excitation. Results Phys. 2020, 16, 102877. [Google Scholar] [CrossRef]
- Hobiny, A.D.; Alzahrani, F.S.; Abbas, I.A. A study on photo-thermo-elastic wave in a semi-conductor material caused by ramp-type heating. Alex. Eng. J. 2021, 60, 2033–2040. [Google Scholar] [CrossRef]
- Mohamed, M.S.; Lotfy, K.; El-Bary, A.; Mahdy, A.M.S. Absorption illumination of a 2D rotator semi-infinite thermoelastic medium using a modified Green and Lindsay model. Case Stud. Therm. Eng. 2021, 26, 101165. [Google Scholar] [CrossRef]
- Youssef, H.M.; Abbas, I.A. Thermal shock problem of generalized thermoelasticity for an infinitely long annular cylinder with variable thermal conductivity. Comput. Methods Sci. Technol. 2007, 13, 95–100. [Google Scholar] [CrossRef] [Green Version]
- Sherief, H.H.; Hamza, F.A. Modeling of variable thermal conductivity in a generalized thermoelastic infinitely long hollow cylinder. Meccanica 2015, 51, 551–558. [Google Scholar] [CrossRef]
- Khoukhi, M.; Abdelbaqi, S.; Hassan, A. Transient temperature change within a wall embedded insulation with variable thermal conductivity. Case Stud. Therm. Eng. 2020, 20, 100645. [Google Scholar] [CrossRef]
- Zenkour, A.M.; Abbas, I.A. Nonlinear Transient Thermal Stress Analysis of Temperature-Dependent Hollow Cylinders Using a Finite Element Model. Int. J. Struct. Stab. Dyn. 2014, 14, 1450025. [Google Scholar] [CrossRef]
- Mahdy, A.M.S.; Lotfy, K.; El-Bary, A.; Atef, H.M.; Allan, M. Influence of variable thermal conductivity on wave propagation for a ramp-type heating semiconductor magneto-rotator hydrostatic stresses medium during photo-excited microtemperature processes. Waves Random Complex Media 2021, 1–23. [Google Scholar] [CrossRef]
- Abbas, I.; Hobiny, A.; Marin, M. Photo-thermal interactions in a semi-conductor material with cylindrical cavities and variable thermal conductivity. J. Taibah Univ. Sci. 2020, 14, 1369–1376. [Google Scholar] [CrossRef]
- Said, S.M.; Othman, M.I.A. The effect of gravity and hydrostatic initial stress with variable thermal conductivity on a magneto-fiber-reinforced. Struct. Eng. Mech. 2020, 74, 425–434. [Google Scholar] [CrossRef]
- Ezzat, M.A.; El-Bary, A.A. Effects of variable thermal conductivity and fractional order of heat transfer on a perfect conducting infinitely long hollow cylinder. Int. J. Therm. Sci. 2016, 108, 62–69. [Google Scholar] [CrossRef]
- Othman, M.I.A.; Abouelregal, A.E. Magnetothermoelstic analysis for an infinite solid cylinder with variable thermal conductivity due to harmonically varying heat. Microsyst. Technol. 2017, 23, 5635–5644. [Google Scholar] [CrossRef]
- Lotfy, K.; Tantawi, R.S.; Anwer, N. Response of Semiconductor Medium of Variable Thermal Conductivity Due to Laser Pulses with Two-Temperature through Photothermal Process. Silicon 2019, 11, 2719–2730. [Google Scholar] [CrossRef]
- Zenkour, A.M.; Abouelregal, A.E. Thermoelastic Interactions in an Infinite Orthotropic Continuum of a Variable Thermal Conductivity with a Cylindrical Hole. Iran. J. Sci. Technol. Trans. Mech. Eng. 2017, 43, 281–290. [Google Scholar] [CrossRef]
- Mahdy, A.M.S.; Lotfy, K.; El-Bary, A.A.; Roshdy, E.M.; Abd El-Raouf, M.M. Variable thermal conductivity during photo-thermoelasticy theory of semiconductor medium induced by laser pulses with hyperbolic two-temperature theory. Waves Random Complex Media 2021, 1–23. [Google Scholar] [CrossRef]
- Khamis, A.K.; Lotfy, K.; El-Bary, A.A. Effect of variable thermal conductivity of semiconductor elastic medium during photothermal excitation subjected to thermal ramp type. Waves Random Complex Media 2022, 32, 78–90. [Google Scholar] [CrossRef]
- Khamis, A.K.; El-Bary, A.A.; Lotfy, K. Electromagnetic Hall current and variable thermal conductivity influence for microtemperature photothermal excitation process of semiconductor material. Waves Random Complex Media 2022, 32, 406–423. [Google Scholar] [CrossRef]
- Mandelis, A.; Nestoros, M.; Christofides, C. Thermoelectronic-wave coupling in laser photothermal theory of semiconductors at elevated temperatures. Opt. Eng. 1997, 36, 459–468. [Google Scholar] [CrossRef]
- Song, Y.Q.; Bai, J.T.; Ren, Z.Y. Study on the reflection of photothermal waves in a semiconducting medium under generalized thermoelastic theory. Acta Mech. 2012, 223, 1545–1557. [Google Scholar] [CrossRef]
- Youssef, H.M.; El-Bary, A.A. Theory of hyperbolic two-temperature generalized thermoelasticity. Mater. Phys. Mech. 2018, 40, 158–171. [Google Scholar] [CrossRef]
- Youssef, H. State-space approach on generalized thermoelasticity for an infinite material with a spherical cavity and variable thermal conductivity subjected to ramp-type heating. Can. Appl. Math. Q. 2005, 13, 4. [Google Scholar]
- Abbas, I.A. Generalized magneto-thermoelasticity in a nonhomogeneous isotropic hollow cylinder using the finite element method. Arch. Appl. Mech. 2009, 79, 41–50. [Google Scholar] [CrossRef]
- Abbas, I.A. A two-dimensional problem for a fibre-reinforced anisotropic thermoelastic half-space with energy dissipation. Sadhana 2011, 36, 411–423. [Google Scholar] [CrossRef] [Green Version]
- Das, N.C.; Lahiri, A.; Giri, R.R. Eigenvalue approach to generalized thermoelasticity. Indian J. Pure Appl. Math. 1997, 28, 1573–1594. [Google Scholar]
- Abbas, I.A. A dual phase lag model on thermoelastic interaction in an infinite fiber-reinforced anisotropic medium with a circular hole. Mech. Based Des. Struct. Mach. 2015, 43, 501–513. [Google Scholar] [CrossRef]
- Lahiri, A.; Das, B.; Sarkar, S. Eigenvalue approach to thermoelastic interactions in an unbounded body with a spherical cavity. In Proceedings of the World Congress on Engineering, London, UK, 30 June–2 July 2010; pp. 1881–1886. [Google Scholar]
- Crump, K.S. Numerical Inversion of Laplace Transforms Using a Fourier Series Approximation. J. ACM 1976, 23, 89–96. [Google Scholar] [CrossRef]
- Song, Y.Q.; Todorovic, D.M.; Cretin, B.; Vairac, P.; Xu, J.; Bai, J.T. Bending of Semiconducting Cantilevers Under Photothermal Excitation. Int. J. Thermophys. 2014, 35, 305–319. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hobiny, A.; Abbas, I. Finite Element Analysis of Generalized Thermoelastic Interaction for Semiconductor Materials under Varying Thermal Conductivity. Mathematics 2022, 10, 4676. https://doi.org/10.3390/math10244676
Hobiny A, Abbas I. Finite Element Analysis of Generalized Thermoelastic Interaction for Semiconductor Materials under Varying Thermal Conductivity. Mathematics. 2022; 10(24):4676. https://doi.org/10.3390/math10244676
Chicago/Turabian StyleHobiny, Aatef, and Ibrahim Abbas. 2022. "Finite Element Analysis of Generalized Thermoelastic Interaction for Semiconductor Materials under Varying Thermal Conductivity" Mathematics 10, no. 24: 4676. https://doi.org/10.3390/math10244676
APA StyleHobiny, A., & Abbas, I. (2022). Finite Element Analysis of Generalized Thermoelastic Interaction for Semiconductor Materials under Varying Thermal Conductivity. Mathematics, 10(24), 4676. https://doi.org/10.3390/math10244676