Analysis of Spatiotemporal Transmission Characteristics of African Swine Fever (ASF) in Mainland China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Data Sources
2.2. Spatial Analytical Framework
3. Results
3.1. Epidemiological Characteristics of ASF
3.2. Spatial Distribution Characteristics of ASF
3.2.1. Spatial Distribution Pattern
3.2.2. Cluster and Outlier
3.2.3. Hot Spots and Cold Spots
3.3. Spatiotemporal Clustering Analysis
3.4. The Direction and Speed of Diffusion of ASF
3.4.1. Global Direction and Speed of Diffusion
3.4.2. Local Direction and Speed of Diffusion
3.4.3. Local Spatial Propagation Prediction
3.5. Spatial Isolation and Exposure
3.5.1. Global Spatial Isolation and Exposure
3.5.2. Local Spatial Isolation and Exposure
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix A.1. The Formula for Global Moran’s I
Appendix A.2. The Formula for Local Moran’s I
Appendix A.3. The Formula for Getis–Ord G i *
References
- Normile, D. Arrival of deadly pig disease could spell disaster for China. Science 2018, 361, 741. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Tian, K. African swine fever in China. Vet. Rec. 2018, 183, 300. [Google Scholar] [CrossRef] [PubMed]
- Cliff, A.D.; Ord, J.K. Spatial Processes: Models & Applications; Taylor & Francis: Abingdon, UK, 1981. [Google Scholar]
- Getis, A.; Ord, J.K. The Analysis of Spatial Association by Use of Distance Statistics. Perspectives on Spatial Data Analysis; Springer: Berlin/Heidelberg, Germany, 2010; pp. 127–145. [Google Scholar]
- Anselin, L. Local indicators of spatial association—LISA. Geogr. Anal. 1995, 27, 93–115. [Google Scholar] [CrossRef]
- Zakharova, O.I.; Titov, I.A.; Gogin, A.E.; Sevskikh, T.A.; Korennoy, F.I.; Kolbasov, D.V.; Abrahamyan, L.; Blokhin, A.A. African swine fever in the Russian Far East (2019–2020): Spatio-temporal analysis and implications for wild ungulates. Front. Vet. Sci. 2021, 8, 723081. [Google Scholar] [CrossRef] [PubMed]
- Andrey, B.; Nadezhda, T.; Olga, B.; Timofey, S.; Andrey, G.; Olga, Z.; Zoran, D. Spatio-Temporal Analysis of the Spread of ASF in the Russian Federation in 2017–2019. Acta Vet.-Beog 2020, 70, 194–206. [Google Scholar] [CrossRef]
- Shao, Q.; Li, R.; Han, Y.; Han, D.; Qiu, J. Temporal and Spatial Evolution of the African Swine Fever Epidemic in Vietnam. Int. J. Environ. Res. Public Health 2022, 19, 8001. [Google Scholar] [CrossRef] [PubMed]
- Andraud, M.; Bougeard, S.; Chesnoiu, T.; Rose, N. Spatiotemporal clustering and Random Forest models to identify risk factors of African swine fever outbreak in Romania in 2018–2019. Sci. Rep. 2021, 11, 2098. [Google Scholar] [CrossRef]
- Ma, J.; Chen, H.; Gao, X.; Xiao, J.; Wang, H. African swine fever emerging in China: Distribution characteristics and high-risk areas. Prev. Vet. Med. 2020, 175, 104861. [Google Scholar] [CrossRef]
- Zhang, P.; Nie, T.; Ma, J.; Chen, H. Identification of Suitable Areas for African Swine Fever Occurrence in China Using Geographic Information System-based Multi-criteria Analysis. Prev. Vet. Med. 2022, 209, 105794. [Google Scholar] [CrossRef]
- Dolan, C.; O’Halloran, A.; Bradley, D.G.; Croke, D.T.; Evans, A.; O’Brien, J.K.; Dicker, P.; Shields, D.C. Genetic stratification of pathogen-response-related and other variants within a homogeneous Caucasian Irish population. Eur. J. Hum. Genet. 2005, 13, 798–806. [Google Scholar] [CrossRef]
- Sadeq, M. Spatial patterns and secular trends in human leishmaniasis incidence in Morocco between 2003 and 2013. Infect. Dis. Poverty 2016, 5, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Waldhör, T. The spatial autocorrelation coefficient Moran’s I under heteroscedasticity. Stat. Med. 1996, 15, 887–892. [Google Scholar] [CrossRef]
- Wu, X.; Hu, S.; Kwaku, A.B.; Li, Q.; Luo, K.; Zhou, Y.; Tan, H. Spatio-temporal clustering analysis and its determinants of hand, foot and mouth disease in Hunan, China, 2009–2015. BMC Infect. Dis. 2017, 17, 645. [Google Scholar] [CrossRef] [PubMed]
- Wong, W.S.D.; Lee, J. Statistical Analysis of Geographic Information with ArcView GIS and ArcGIS; Wiley: Hoboken, NJ, USA, 2005. [Google Scholar]
- Kulldorff, M.; Huang, L.; Pickle, L.; Duczmal, L. An elliptic spatial scan statistic. Stat. Med. 2006, 25, 3929–3943. [Google Scholar] [CrossRef]
- Kulldorff, M.; Feuer, E.J.; Miller, B.A.; Freedma, L.S. Breast cancer clusters in the northeast United States: A geographic analysis. Am. J. Epidemiol. 1997, 146, 161–170. [Google Scholar] [CrossRef]
- Lucey, B.T.; Russell, C.A.; Smith, D.; Wilson, M.L.; Long, A.; Waller, L.A.; Childs, J.E.; Real, L.A. Spatiotemporal analysis of epizootic raccoon rabies propagation in Connecticut, 1991–1995. Vector Borne Zoonotic Dis. 2002, 2, 77–86. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moore, D.A.; Carpenter, T.E. Spatial analytical methods and geographic information systems: Use in health research and epidemiology. Epidemiol. Rev. 1999, 21, 143–161. [Google Scholar] [CrossRef] [Green Version]
- Moore, D.A. Spatial diffusion of raccoon rabies in Pennsylvania, USA. Prev. Vet. Med. 1999, 40, 19–32. [Google Scholar] [CrossRef]
- Lizarazo, E.; Vincenti-Gonzalez, M.; Grillet, M.E.; Bethencourt, S.; Diaz, O.; Ojeda, N.; Ochoa, H.; Rangel, M.A.; Tamicorresponding, A. Spatial dynamics of Chikungunya virus, Venezuela, 2014. Emerg. Infect. Dis. 2019, 25, 672. [Google Scholar] [CrossRef] [Green Version]
- Oliver, M.A.; Webster, R. Kriging: A method of interpolation for geographical information systems. Int. J. Geogr. Inf. Sci. 1990, 4, 313–332. [Google Scholar] [CrossRef]
- Dale, M.R.T.; Fortin, M.J. Spatial Analysis: A Guide for Ecologists; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- Bell, W. A probability model for the measurement of ecological segregation. Soc. Forces 1954, 32, 357–364. [Google Scholar] [CrossRef]
- Gottman, J.M.; Coan, J.; Carrere, S.; Swanson, C. Predicting marital happiness and stability from newlywed interactions. Soc. Forces 1998, 5–22. [Google Scholar] [CrossRef] [Green Version]
- Feitosa, F.F.; Camara, G.; Monteiro, A.M.V.; Koschitzki, T.; Silva, M.P.S. Global and local spatial indices of urban segregation. Int. J. Geogr. Inf. Sci. 2007, 21, 299–323. [Google Scholar] [CrossRef] [Green Version]
- Kolbasov, D.; Titov, I.; Tsybanov, S.; Gogin, A.; Malogolovkin, A. African swine fever virus, Siberia, Russia, 2017. Emerg. Infect. Dis. 2018, 24, 796–798. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Li, N.; Luo, Y.; Liu, Y.; Miao, F.; Chen, T.; Zhang, S.; Cao, P.; Li, X.; Tian, K.; et al. Emergence of African swine fever in China, 2018. Transbound. Emerg. Dis. 2018, 65, 1482–1484. [Google Scholar] [CrossRef] [PubMed]
Moran’s I | Expected I | Variance | Z-Score | p-Value | Result |
---|---|---|---|---|---|
clustered |
Cluster Type | Cluster Time Frame | Coordinates/Radius (km) | Cities (n) | RR | LLR | p-Value |
---|---|---|---|---|---|---|
Most likely cluster | 19 June 2019–25 June 2019 | (26.284520 N, 107.257580 E)/0 | 1 | 2886.34 | 138.32 | <0.001 |
Secondary cluster1 | 1 August 2018–10 October 2018 | (41.156280 N, 123.131015 E)/106.59 | 5 | 182.05 | 119.85 | <0.001 |
Secondary cluster2 | 3 April 2019–10 April 2019 | (29.110541 N, 95.458920 E)/406.86 | 4 | 24,267.31 | 117.83 | <0.001 |
Secondary cluster3 | 29 August 2018–11 September 2018 | (31.544085 N, 118.625382 E)/160.91 | 12 | 200.92 | 38.57 | <0.001 |
Secondary cluster4 | 7 November 2018–27 November 2018 | (30.319164 N, 114.792200 E)/59.46 | 4 | 3609.70 | 35.90 | <0.001 |
Secondary cluster5 | 17 April 2019–23 April 2019 | (22.126148 N, 113.574880 E)/502.52 | 38 | 223.62 | 35.16 | <0.001 |
Secondary cluster6 | 21 November 2018–11 December 2018 | (37.937164 N, 112.328130 E)/523.88 | 59 | 19.37 | 19.93 | <0.001 |
Cluster Type | Cluster Time Frame | Coordinates/Radius (km) | Districts(n) | RR | LLR | p-Value |
---|---|---|---|---|---|---|
Most likely cluster | 26 September 2018–16 October 2018 | (40.958400 N, 122.105000 E)/52.63 | 9 | 337.50 | 83.34 | <0.001 |
Secondary cluster1 | 8 August 2018–14 August 2018 | (41.921700 N, 123.681000 E)/24.27 | 9 | 1242.38 | 42.07 | <0.001 |
Secondary cluster2 | 24 July 2019–30 July 2019 | (42.993600 N, 123.935000 E)/72.03 | 6 | 547.73 | 15.79 | <0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pei, X.; Li, M.; Hu, J.; Zhang, J.; Jin, Z. Analysis of Spatiotemporal Transmission Characteristics of African Swine Fever (ASF) in Mainland China. Mathematics 2022, 10, 4709. https://doi.org/10.3390/math10244709
Pei X, Li M, Hu J, Zhang J, Jin Z. Analysis of Spatiotemporal Transmission Characteristics of African Swine Fever (ASF) in Mainland China. Mathematics. 2022; 10(24):4709. https://doi.org/10.3390/math10244709
Chicago/Turabian StylePei, Xin, Mingtao Li, Jianghong Hu, Juan Zhang, and Zhen Jin. 2022. "Analysis of Spatiotemporal Transmission Characteristics of African Swine Fever (ASF) in Mainland China" Mathematics 10, no. 24: 4709. https://doi.org/10.3390/math10244709
APA StylePei, X., Li, M., Hu, J., Zhang, J., & Jin, Z. (2022). Analysis of Spatiotemporal Transmission Characteristics of African Swine Fever (ASF) in Mainland China. Mathematics, 10(24), 4709. https://doi.org/10.3390/math10244709