Mathematical Approach for Mechanical Behaviour Analysis of FGM Plates on Elastic Foundation
Abstract
:1. Introduction
2. Mathematical Formulation
2.1. Material Properties
2.1.1. The Power Law (P-FGM) Variation
2.1.2. The Exponential (E-FGM) Variation
2.1.3. The Mori–Tanaka Homogenization Model
2.2. Kinematics
- If the εz ≠ 0 then Qij are
- If the εz = 0, then Qij are
2.3. Equilibrium Equations and Stress Components
3. Closed-Form Solutions for Simply Supported FG Plates
- For uniformly distributed load
- For sinusoidal distributed load
4. Results and Discussion
4.1. Bending Analysis of Simply Supported FG Plates
4.1.1. Functionally Graded Plates (P-FGM)
4.1.2. Exponentially Graded Plates (E−FGM)
4.1.3. Comparative Study
4.2. Analysis of FG Plates on Elastic Foundation
5. Conclusions
- Through all the comparative investigations, it can be seen that the proposed theory proves good agreement with the results of other 2D and quasi-3D HSDTs.
- The power law index has the effect of increasing deflections of plate. The influence of the value of material index more than 5 is negligible.
- The small difference between the present 2D and quasi-3D shear deformation results is due to neglecting the thickness stretching effect.
- Results demonstrate that the plate becomes stiffer when the effects of normal deformations are considered, consequently leading to a decrease in deflection and an increase in stresses.
- The thickness stretching effect is more pronounced for thick plates and it needs to be taken into account in the modelling.
- The decreasing effect of foundation parameters on the deflection leads to an increase in the FG plate stiffness.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
Parameters | Description | Units | Parameters | Description | Units |
a | Length | m | p | Power law index | / |
b | Width | m | σij | Stress tensor | N m−2 |
h | Thickness | m | εij | Strain tensor | |
E | Young’s modulus | GPa | Qij | Engineering constants | GPa |
v | Poisson ratio | / | u, v, w | Displacements in x, y, z axis. | m |
ρ | Mass Density | Kg/m3 | q | Mechanical load | N |
P | Material property | / | f(z) | Shape function | / |
V | Volume fraction | / | m, n | modes | / |
References
- Jha, D.K.; Kant, T.; Singh, R.K. Higher Order Shear and Normal Deformation Theory for Natural Frequency of Functionally Graded Rectangular Plates. Nucl. Eng. Des. 2012, 250, 8–13. [Google Scholar] [CrossRef]
- Hebali, H.; Tounsi, A.; Houari, M.S.A.; Bessaim, A.; Bedia, E.A.A. New Quasi-3D Hyperbolic Shear Deformation Theory for the Static and Free Vibration Analysis of Functionally Graded Plates. J. Eng. Mech. 2014, 140, 374–383. [Google Scholar] [CrossRef]
- Nguyen, T.-K. A Higher-Order Hyperbolic Shear Deformation Plate Model for Analysis of Functionally Graded Materials. Int. J. Mech. Mater. Des. 2015, 11, 203–219. [Google Scholar] [CrossRef]
- Abdulrazzaq, M.A.; Fenjan, R.M.; Ahmed, R.A.; Faleh, N.M. Thermal Buckling of Nonlocal Clamped Exponentially Graded Plate According to a Secant Function Based Refined Theory. Steel Compos. Struct. 2020, 35, 147–157. [Google Scholar]
- Alijani, F.; Amabili, M. Effect of Thickness Deformation on Large-Amplitude Vibrations of Functionally Graded Rectangular Plates. Compos. Struct. 2014, 113, 89–107. [Google Scholar] [CrossRef]
- Arefi, M.; Allam, M.N.M. Nonlinear Responses of an Arbitrary FGP Circular Plate Resting on the Winkler-Pasternak Foundation. Smart Struct. Syst. 2015, 16, 81–100. [Google Scholar] [CrossRef]
- Amir, S.; Arshid, E.; Rasti-Alhosseini, S.M.A.; Loghman, A. Quasi-3D Tangential Shear Deformation Theory for Size-Dependent Free Vibration Analysis of Three-Layered FG Porous Micro Rectangular Plate Integrated by Nano-Composite Faces in Hygrothermal Environment. J. Therm. Stresses 2020, 43, 133–156. [Google Scholar] [CrossRef]
- Azadi, M. Free and Forced Vibration Analysis of FG Beam Considering Temperature Dependency of Material Properties. J. Mech. Sci. Technol. 2011, 25, 69–80. [Google Scholar] [CrossRef]
- Zaoui, F.Z.; Ouinas, D.; Tounsi, A.; Viña Olay, J.A.; Achour, B.; Touahmia, M. Fundamental Frequency Analysis of Functionally Graded Plates with Temperature-Dependent Properties Based on Improved Exponential-Trigonometric Two-Dimensional Higher Shear Deformation Theory. Arch. Appl. Mech. 2021, 91, 859–881. [Google Scholar] [CrossRef]
- Hosseini-Hashemi, S.; Rokni Damavandi Taher, H.; Akhavan, H.; Omidi, M. Free Vibration of Functionally Graded Rectangular Plates Using First-Order Shear Deformation Plate Theory. Appl. Math. Model. 2010, 34, 1276–1291. [Google Scholar] [CrossRef]
- Golmakani, M.E.; Alamatian, J. Large Deflection Analysis of Shear Deformable Radially Functionally Graded Sector Plates on Two-Parameter Elastic Foundations. Eur. J. Mech.-A/Solids 2013, 42, 251–265. [Google Scholar] [CrossRef]
- Duc, N.D.; Quan, T.Q. Nonlinear Dynamic Analysis of Imperfect Functionally Graded Material Double Curved Thin Shallow Shells with Temperature-Dependent Properties on Elastic Foundation. J. Vib. Control 2015, 21, 1340–1362. [Google Scholar] [CrossRef]
- Khalili, A.; Vosoughi, A.R. An Approach for the Pasternak Elastic Foundation Parameters Estimation of Beams Using Simulated Frequencies. Inverse Probl. Sci. Eng. 2018, 26, 1079–1093. [Google Scholar] [CrossRef]
- Meksi, A.; Benyoucef, S.; Houari, M.S.A.; Tounsi, A. A Simple Shear Deformation Theory Based on Neutral Surface Position for Functionally Graded Plates Resting on Pasternak Elastic Foundations. Struct. Eng. Mech. Int. J. 2015, 53, 1215–1240. [Google Scholar] [CrossRef]
- Shahbaztabar, A.; Ranji, A.R. Effects of In-Plane Loads on Free Vibration of Symmetrically Cross-Ply Laminated Plates Resting on Pasternak Foundation and Coupled with Fluid. Ocean Eng. 2016, 115, 196–209. [Google Scholar] [CrossRef]
- Radaković, A.; Čukanović, D.; Bogdanović, G.; Blagojević, M.; Stojanović, B.; Dragović, D.; Manić, N. Thermal Buckling and Free Vibration Analysis of Functionally Graded Plate Resting on an Elastic Foundation According to High Order Shear Deformation Theory Based on New Shape Function. Appl. Sci. 2020, 10, 4190. [Google Scholar] [CrossRef]
- Zenkour, A.M.; El-Shahrany, H.D. Hygrothermal Forced Vibration of a Viscoelastic Laminated Plate with Magnetostrictive Actuators Resting on Viscoelastic Foundations. Int. J. Mech. Mater. Des. 2021, 17, 301–320. [Google Scholar] [CrossRef]
- Zaoui, F.Z.; Ouinas, D.; Achour, B.; Tounsi, A.; Latifee, E.R.; Al-Naghi, A.A.A. A Hyperbolic Shear Deformation Theory for Natural Frequencies Study of Functionally Graded Plates on Elastic Supports. J. Compos. Sci. 2022, 6, 285. [Google Scholar] [CrossRef]
- Zenkour, A.M. Benchmark Trigonometric and 3-D Elasticity Solutions for an Exponentially Graded Thick Rectangular Plate. Arch. Appl. Mech. 2007, 77, 197–214. [Google Scholar] [CrossRef]
- Zenkour, A.M. The Refined Sinusoidal Theory for FGM Plates on Elastic Foundations. Int. J. Mech. Sci. 2009, 51, 869–880. [Google Scholar] [CrossRef]
- Carrera, E.; Brischetto, S.; Cinefra, M.; Soave, M. Effects of Thickness Stretching in Functionally Graded Plates and Shells. Compos. Part B Eng. 2011, 42, 123–133. [Google Scholar] [CrossRef] [Green Version]
- Neves, A.M.A.; Ferreira, A.J.M.; Carrera, E.; Roque, C.M.C.; Cinefra, M.; Jorge, R.M.N.; Soares, C.M.M. A Quasi-3D Sinusoidal Shear Deformation Theory for the Static and Free Vibration Analysis of Functionally Graded Plates. Compos. Part B Eng. 2012, 43, 711–725. [Google Scholar] [CrossRef]
- Neves, A.M.A.; Ferreira, A.J.M.; Carrera, E.; Cinefra, M.; Roque, C.M.C.; Jorge, R.M.N.; Soares, C.M.M. A Quasi-3D Hyperbolic Shear Deformation Theory for the Static and Free Vibration Analysis of Functionally Graded Plates. Compos. Struct. 2012, 94, 1814–1825. [Google Scholar] [CrossRef]
- Thai, H.-T.; Park, M.; Choi, D.-H. A Simple Refined Theory for Bending, Buckling, and Vibration of Thick Plates Resting on Elastic Foundation. Int. J. Mech. Sci. 2013, 73, 40–52. [Google Scholar] [CrossRef]
- Ouinas, D.; Achour, B. Buckling Analysis of Laminated Composite Plates [(θ/−θ)] Containing an Elliptical Notch. Compos. Part B Eng. 2013, 55, 575–579. [Google Scholar] [CrossRef]
- Mantari, J.L.; Guedes Soares, C. A Novel Higher-Order Shear Deformation Theory with Stretching Effect for Functionally Graded Plates. Compos. Part B Eng. 2013, 45, 268–281. [Google Scholar] [CrossRef]
- Zhang, H.; Jiang, J.; Zhang, Z. Three-Dimensional Elasticity Solutions for Bending of Generally Supported Thick Functionally Graded Plates. Appl. Math. Mech.-Engl. Ed. 2014, 35, 1467–1478. [Google Scholar] [CrossRef]
- Al Khateeb, S.A.; Zenkour, A.M. A Refined Four-Unknown Plate Theory for Advanced Plates Resting on Elastic Foundations in Hygrothermal Environment. Compos. Struct. 2014, 111, 240–248. [Google Scholar] [CrossRef]
- Thai, H.-T.; Choi, D.-H. Zeroth-Order Shear Deformation Theory for Functionally Graded Plates Resting on Elastic Foundation. Int. J. Mech. Sci. 2014, 78, 35–43. [Google Scholar] [CrossRef]
- Lee, W.-H.; Han, S.-C.; Park, W.-T. A Refined Higher Order Shear and Normal Deformation Theory for E-, P-, and S-FGM Plates on Pasternak Elastic Foundation. Compos. Struct. 2015, 122, 330–342. [Google Scholar] [CrossRef]
- Akavci, S.S.; Tanrikulu, A.H. Static and Free Vibration Analysis of Functionally Graded Plates Based on a New Quasi-3D and 2D Shear Deformation Theories. Compos. Part B Eng. 2015, 83, 203–215. [Google Scholar] [CrossRef]
- Mantari, J.L.; Granados, E.V. An Original FSDT to Study Advanced Composites on Elastic Foundation. Thin-Walled Struct. 2016, 107, 80–89. [Google Scholar] [CrossRef]
- Houari, M.S.A.; Tounsi, A.; Bessaim, A.; Mahmoud, S.R. A New Simple Three-Unknown Sinusoidal Shear Deformation Theory for Functionally Graded Plates. Steel Compos. Struct. 2016, 22, 257–276. [Google Scholar] [CrossRef]
- Aldousari, S.M. Bending Analysis of Different Material Distributions of Functionally Graded Beam. Appl. Phys. A 2017, 123, 296. [Google Scholar] [CrossRef]
- Meftah, A.; Bakora, A.; Zaoui, F.Z.; Tounsi, A.; Bedia, E.A.A. A Non-Polynomial Four Variable Refined Plate Theory for Free Vibration of Functionally Graded Thick Rectangular Plates on Elastic Foundation. Steel Compos. Struct. 2017, 23, 317–330. [Google Scholar] [CrossRef]
- Zaoui, F.Z.; Tounsi, A.; Ouinas, D. Free Vibration of Functionally Graded Plates Resting on Elastic Foundations Based on Quasi-3D Hybrid-Type Higher Order Shear Deformation Theory. Smart Struct. Syst. 2017, 20, 509–524. [Google Scholar]
- Guerroudj, H.Z.; Yeghnem, R.; Kaci, A.; Zaoui, F.Z.; Benyoucef, S.; Tounsi, A. Eigenfrequencies of Advanced Composite Plates Using an Efficient Hybrid Quasi-3D Shear Deformation Theory. Smart Struct. Syst. 2018, 22, 121–132. [Google Scholar]
- Amar, L.H.H.; Kaci, A.; Yeghnem, R.; Tounsi, A. A New Four-Unknown Refined Theory Based on Modified Couple Stress Theory for Size-Dependent Bending and Vibration Analysis of Functionally Graded Micro-Plate. Steel Compos. Struct. 2018, 26, 89–102. [Google Scholar] [CrossRef]
- Younsi, A.; Tounsi, A.; Zaoui, F.Z.; Bousahla, A.A.; Mahmoud, S.R. Novel Quasi-3D and 2D Shear Deformation Theories for Bending and Free Vibration Analysis of FGM Plates. Geomech. Eng. 2018, 14, 519–532. [Google Scholar]
- Belkhodja, Y.; Ouinas, D.; Zaoui, F.Z.; Fekirini, H. An Exponential-Trigonometric Higher Order Shear Deformation Theory (HSDT) for Bending, Free Vibration, and Buckling Analysis of Functionally Graded Materials (FGMs) Plates. Adv. Compos. Lett. 2020, 29, 096369351987573. [Google Scholar] [CrossRef]
- Wang, Y.; Zeng, R.; Safarpour, M. Vibration Analysis of FG-GPLRC Annular Plate in a Thermal Environment. Mech. Based Des. Struct. Mach. 2022, 50, 352–370. [Google Scholar] [CrossRef]
- Shah, N.A.; Wakif, A.; El-Zahar, E.R.; Ahmad, S.; Yook, S.-J. Numerical Simulation of a Thermally Enhanced EMHD Flow of a Heterogeneous Micropolar Mixture Comprising (60%)-Ethylene Glycol (EG), (40%)-Water (W), and Copper Oxide Nanomaterials (CuO). Case Stud. Therm. Eng. 2022, 35, 102046. [Google Scholar] [CrossRef]
- Sajjan, K.; Shah, N.A.; Ahammad, N.A.; Raju, C.S.K.; Kumar, M.D.; Weera, W.; Sajjan, K.; Shah, N.A.; Ahammad, N.A.; Raju, C.S.K.; et al. Nonlinear Boussinesq and Rosseland Approximations on 3D Flow in an Interruption of Ternary Nanoparticles with Various Shapes of Densities and Conductivity Properties. AIMS Math. 2022, 7, 18416–18449. [Google Scholar] [CrossRef]
- Raza, Q.; Qureshi, M.Z.A.; Khan, B.A.; Kadhim Hussein, A.; Ali, B.; Shah, N.A.; Chung, J.D. Insight into Dynamic of Mono and Hybrid Nanofluids Subject to Binary Chemical Reaction, Activation Energy, and Magnetic Field through the Porous Surfaces. Mathematics 2022, 10, 3013. [Google Scholar] [CrossRef]
- Sabu, A.S.; Wakif, A.; Areekara, S.; Mathew, A.; Shah, N.A. Significance of Nanoparticles’ Shape and Thermo-Hydrodynamic Slip Constraints on MHD Alumina-Water Nanoliquid Flows over a Rotating Heated Disk: The Passive Control Approach. Int. Commun. Heat Mass Transf. 2021, 129, 105711. [Google Scholar] [CrossRef]
- Qureshi, M.Z.A.; Faisal, M.; Raza, Q.; Ali, B.; Botmart, T.; Shah, N.A.; Qureshi, M.Z.A.; Faisal, M.; Raza, Q.; Ali, B.; et al. Morphological Nanolayer Impact on Hybrid Nanofluids Flow Due to Dispersion of Polymer/CNT Matrix Nanocomposite Material. AIMS Math. 2023, 8, 633–656. [Google Scholar] [CrossRef]
- Mahsud, Y.; Shah, N.A.; Vieru, D. Influence of Time-Fractional Derivatives on the Boundary Layer Flow of Maxwell Fluids. Chin. J. Phys. 2017, 55, 1340–1351. [Google Scholar] [CrossRef]
- Elnaqeeb, T.; Shah, N.A.; Mirza, I.A. Natural Convection Flows of Carbon Nanotubes Nanofluids with Prabhakar-like Thermal Transport. Math. Methods Appl. Sci. 2020. [Google Scholar] [CrossRef]
- Vieru, D.; Fetecau, C.; Shah, N.A.; Yook, S.-J. Unsteady Natural Convection Flow Due to Fractional Thermal Transport and Symmetric Heat Source/Sink. Alex. Eng. J. 2022; in press. [Google Scholar] [CrossRef]
- Saffari, P.R.; Fakhraie, M.; Roudbari, M.A. Nonlinear Vibration of Fluid Conveying Cantilever Nanotube Resting on Visco-Pasternak Foundation Using Non-Local Strain Gradient Theory. Micro Nano Lett. 2020, 15, 181–186. [Google Scholar] [CrossRef]
- Alazwari, M.A.; Zenkour, A.M. A Quasi-3D Refined Theory for the Vibration of Functionally Graded Plates Resting on Visco-Winkler-Pasternak Foundations. Mathematics 2022, 10, 716. [Google Scholar] [CrossRef]
- Zaoui, F.Z.; Ouinas, D.; Tounsi, A. New 2D and Quasi-3D Shear Deformation Theories for Free Vibration of Functionally Graded Plates on Elastic Foundations. Compos. Part B Eng. 2019, 159, 231–247. [Google Scholar] [CrossRef]
- Zaoui, F.Z.; Hanifi, H.A.L.; Younsi, A.; Meradjah, M.; Tounsi, A.; Ouinas, D. Free Vibration Analysis of Functionally Graded Beams Using a Higher-Order Shear Deformation Theory. Math. Model. Eng. Probl. 2017, 4, 7–12. [Google Scholar] [CrossRef]
- Meradjah, M.; Bouakkaz, K.; Zaoui, F.Z.; Tounsi, A. A Refined Quasi-3D Hybrid-Type Higher Order Shear Deformation Theory for Bending and Free Vibration Analysis of Advanced Composites Beams. Wind. Struct. 2018, 27, 269–282. [Google Scholar]
- Zaoui, F.Z.; Tounsi, A.; Ouinas, D.; Viña Olay, J.A. A Refined HSDT for Bending and Dynamic Analysis of FGM Plates. Struct. Eng. Mech. Int’l J. 2020, 74, 105–119. [Google Scholar]
- Zenkour, A.M.; Hafed, Z.S.; Radwan, A.F. Bending Analysis of Functionally Graded Nanoscale Plates by Using Nonlocal Mixed Variational Formula. Mathematics 2020, 8, 1162. [Google Scholar] [CrossRef]
- Rachid, A.; Ouinas, D.; Lousdad, A.; Zaoui, F.Z.; Achour, B.; Gasmi, H.; Butt, T.A.; Tounsi, A. Mechanical Behavior and Free Vibration Analysis of FG Doubly Curved Shells on Elastic Foundation via a New Modified Displacements Field Model of 2D and Quasi-3D HSDTs. Thin-Walled Struct. 2022, 172, 108783. [Google Scholar] [CrossRef]
- Vaghefi, R.; Baradaran, G.H.; Koohkan, H. Three-Dimensional Static Analysis of Thick Functionally Graded Plates by Using Meshless Local Petrov–Galerkin (MLPG) Method. Eng. Anal. Bound. Elem. 2010, 34, 564–573. [Google Scholar] [CrossRef]
Material | Properties | ||
---|---|---|---|
E (GPa) | V | ρ (kg/m3) | |
Aluminum (Al) | 70 | 0.3 | 2702 |
Alumina (Al2O3) | 380 | 0.3 | 3800 |
Zirconia (ZrO2) | 200 | 0.3 | 5700 |
k | Theory | |||||||
---|---|---|---|---|---|---|---|---|
0 | Akavci and Tanrikulu [31] | = 0 | 0.4665 | 2.8909 | 1.9103 | 0.4988 | 0.4363 | 1.2857 |
Akavci and Tanrikulu [31] | ≠ 0 | 0.4635 | 2.9981 | 1.8925 | 0.4782 | 0.4315 | 1.2578 | |
Younsi et al. [39] | = 0 | 0.4665 | 2.8913 | 1.9102 | 0.5043 | 0.4367 | 1.2855 | |
Younsi et al. [39] | ≠ 0 | 0.4637 | 2.9919 | 1.8932 | 0.5042 | 0.4317 | 1.2585 | |
Present study | = 0 | 0.4665 | 2.8912 | 1.9102 | 0.5043 | 0.4369 | 1.2856 | |
Present study | ≠ 0 | 0.4625 | 3.0729 | 1.8756 | 0.4761 | 0.4307 | 1.2548 | |
1 | Akavci and Tanrikulu [31] | = 0 | 0.9288 | 4.4707 | 2.1693 | 0.4988 | 0.5364 | 1.1141 |
Akavci and Tanrikulu [31] | ≠ 0 | 0.8977 | 4.6110 | 2.0822 | 0.4782 | 0.5119 | 1.0211 | |
Younsi et al. [39] | = 0 | 0.9287 | 4.4713 | 2.1692 | 0.5043 | 0.5370 | 1.1141 | |
Younsi et al. [39] | ≠ 0 | 0.8980 | 4.6005 | 2.0832 | 0.4791 | 0.5121 | 1.0225 | |
Present study | = 0 | 0.9287 | 4.4713 | 2.1692 | 0.5042 | 0.5372 | 1.1141 | |
Present study | ≠ 0 | 0.8961 | 4.7379 | 2.0578 | 0.4761 | 0.5114 | 1.0206 | |
2 | Akavci and Tanrikulu [31] | = 0 | 1.1940 | 5.2248 | 2.0342 | 0.4581 | 0.5643 | 0.9909 |
Akavci and Tanrikulu [31] | ≠ 0 | 1.1376 | 5.3825 | 1.9257 | 0.4524 | 0.5081 | 0.8921 | |
Younsi et al. [39] | = 0 | 1.1940 | 5.2256 | 2.0340 | 0.4637 | 0.5657 | 0.9908 | |
Younsi et al. [39] | ≠ 0 | 1.1380 | 5.3726 | 1.9281 | 0.4532 | 0.5082 | 0.8926 | |
Present study | = 0 | 1.1940 | 5.2255 | 2.0340 | 0.4636 | 0.5658 | 0.9908 | |
Present study | ≠ 0 | 1.1352 | 5.5232 | 1.8972 | 0.4505 | 0.5074 | 0.8902 | |
4 | Akavci and Tanrikulu [31] | = 0 | 1.3888 | 5.8855 | 1.7205 | 0.4090 | 0.5253 | 1.0305 |
Akavci and Tanrikulu [31] | ≠ 0 | 1.3259 | 6.0382 | 1.6062 | 0.4358 | 0.4804 | 0.9274 | |
Younsi et al. [39] | = 0 | 1.3890 | 5.8866 | 1.7202 | 0.4151 | 0.5278 | 1.0303 | |
Younsi et al. [39] | ≠ 0 | 1.3262 | 6.0301 | 1.6101 | 0.4365 | 0.4806 | 0.9279 | |
Present study | = 0 | 1.3889 | 5.8865 | 1.7202 | 0.4149 | 0.5279 | 1.0303 | |
Present study | ≠ 0 | 1.3237 | 6.1920 | 1.5744 | 0.4341 | 0.4797 | 0.9256 | |
10 | Akavci and Tanrikulu [31] | = 0 | 1.5875 | 7.3617 | 1.2828 | 0.4436 | 0.4159 | 1.0705 |
Akavci and Tanrikulu [31] | ≠ 0 | 1.5453 | 7.5123 | 1.2016 | 0.4332 | 0.4561 | 0.9860 | |
Younsi et al. [39] | = 0 | 1.5875 | 7.3628 | 1.2825 | 0.4495 | 0.4174 | 1.0703 | |
Younsi et al. [39] | ≠ 0 | 1.5454 | 7.5064 | 1.2059 | 0.4339 | 0.4562 | 0.9862 | |
Present study | = 0 | 1.5875 | 7.3628 | 1.2825 | 0.4495 | 0.4176 | 1.0703 | |
Present study | ≠ 0 | 1.5436 | 7.6914 | 1.1724 | 0.4314 | 0.4554 | 0.9852 |
k | Theory | |||||||
---|---|---|---|---|---|---|---|---|
a/h = 4 | a/h = 10 | a/h = 100 | a/h = 4 | a/h = 10 | a/h = 100 | |||
1 | Carrera et al. [21] | ≠ 0 | 0.6221 | 1.5064 | 14.9690 | 0.7171 | 0.5875 | 0.5625 |
Neves et al. [22] | ≠ 0 | 0.5925 | 1.4945 | 14.9690 | 0.6997 | 0.5845 | 0.5624 | |
Neves et al. [23] | ≠ 0 | 0.5910 | 1.4917 | 14.9440 | 0.7020 | 0.5868 | 0.5648 | |
Hebali et al. [2] | ≠ 0 | 0.5952 | 1.4954 | 14.9630 | 0.6910 | 0.5686 | 0.5452 | |
Akavci and Tanrikulu [31] | = 0 | 0.5806 | 1.4895 | 14.9670 | 0.7282 | 0.5889 | 0.5625 | |
Akavci and Tanrikulu [31] | ≠ 0 | 0.5754 | 1.4322 | 14.3060 | 0.6908 | 0.5691 | 0.5457 | |
Younsi et al. [39] | = 0 | 0.5808 | 1.4896 | 14.9675 | 0.7283 | 0.5889 | 0.5625 | |
Younsi et al. [39] | ≠ 0 | 0.5758 | 1.4330 | 14.3135 | 0.6910 | 0.5692 | 0.5459 | |
Present study | = 0 | 0.5803 | 1.4894 | 14.9675 | 0.7280 | 0.5889 | 0.5625 | |
Present study | ≠ 0 | 0.5705 | 1.4157 | 14.1330 | 0.6896 | 0.5680 | 0.5447 | |
4 | Carrera et al. [21] | ≠ 0 | 0.4877 | 1.1971 | 11.9230 | 1.1585 | 0.8821 | 0.8286 |
Neves et al. [22] | ≠ 0 | 0.4404 | 1.1783 | 11.9320 | 1.1178 | 0.8750 | 0.8286 | |
Neves et al. [23] | ≠ 0 | 0.4340 | 1.1593 | 11.7380 | 1.1095 | 0.8698 | 0.8241 | |
Hebali et al. [2] | ≠ 0 | 0.4507 | 1.1779 | 11.8710 | 1.0964 | 0.8413 | 0.7926 | |
Akavci and Tanrikulu [31] | = 0 | 0.4431 | 1.1787 | 11.9200 | 1.1613 | 0.8818 | 0.8287 | |
Akavci and Tanrikulu [31] | ≠ 0 | 0.4247 | 1.1017 | 11.0880 | 1.0983 | 0.8417 | 0.7925 | |
Younsi et al. [39] | = 0 | 0.4437 | 1.1789 | 11.9209 | 1.1609 | 0.8817 | 0.8287 | |
Younsi et al. [39] | ≠ 0 | 0.4260 | 1.1045 | 11.1152 | 1.0982 | 0.8419 | 0.7928 | |
Present study | = 0 | 0.4424 | 1.1783 | 11.9208 | 1.1618 | 0.8818 | 0.8287 | |
Present study | ≠ 0 | 0.4181 | 1.0802 | 10.8633 | 1.0970 | 0.8403 | 0.7910 | |
10 | Carrera et al. [21] | ≠ 0 | 0.3965 | 0.8965 | 8.9077 | 1.3745 | 1.0072 | 0.9361 |
Neves et al. [22] | ≠ 0 | 0.3227 | 1.1783 | 11.9320 | 1.3490 | 0.8750 | 0.8286 | |
Neves et al. [23] | ≠ 0 | 0.3108 | 0.8467 | 8.6013 | 1.3327 | 0.9886 | 0.9228 | |
Hebali et al. [2] | ≠ 0 | 0.3325 | 0.8889 | 8.9977 | 1.3333 | 0.9791 | 0.9114 | |
Akavci and Tanrikulu [31] | = 0 | 0.3242 | 0.8778 | 8.9059 | 1.3917 | 1.0089 | 0.9362 | |
Akavci and Tanrikulu [31] | ≠ 0 | 0.3095 | 0.8229 | 8.3185 | 1.3352 | 0.9818 | 0.9141 | |
Younsi et al. [39] | = 0 | 0.3248 | 0.8780 | 8.9059 | 1.3915 | 1.0088 | 0.9362 | |
Younsi et al. [39] | ≠ 0 | 0.3109 | 0.8259 | 8.3473 | 1.3353 | 0.9819 | 0.9141 | |
Present study | = 0 | 0.3235 | 0.8775 | 8.9059 | 1.3917 | 1.0089 | 0.9362 | |
Present study | ≠ 0 | 0.3033 | 0.8031 | 8.1118 | 1.3333 | 0.9807 | 0.9130 |
b/a | Theory | εz | k | |||||
---|---|---|---|---|---|---|---|---|
0.1 | 0.3 | 0.5 | 0.7 | 1 | 1.5 | |||
1 | Zenkour [19] | ≠ 0 | 0.5769 | 0.5247 | 0.4766 | 0.4324 | 0.3726 | 0.2890 |
Zenkour [19] | = 0 | 0.5730 | 0.5180 | 0.4678 | 0.4221 | 0.3611 | 0.2771 | |
Mantari and Soares [26] | ≠ 0 | 0.5778 | 0.5224 | 0.4717 | 0.4256 | 0.3648 | 0.2793 | |
Mantari and Soares [26] | = 0 | 0.6362 | 0.5751 | 0.5194 | 0.4687 | 0.4017 | 0.3079 | |
Akavci and Tanrikulu [31] | = 0 | 0.6351 | 0.5741 | 0.5185 | 0.4679 | 0.4004 | 0.3075 | |
Akavci and Tanrikulu [31] | ≠ 0 | 0.5750 | 0.5198 | 0.4694 | 0.4236 | 0.3624 | 0.2780 | |
Younsi et al. [39] | = 0 | 0.6355 | 0.5745 | 0.5189 | 0.4683 | 0.4007 | 0.3077 | |
Younsi et al. [39] | ≠ 0 | 0.5758 | 0.5205 | 0.4701 | 0.4242 | 0.3629 | 0.2784 | |
Present study | = 0 | 0.6343 | 0.5734 | 0.5179 | 0.4674 | 0.4000 | 0.3072 | |
Present study | ≠ 0 | 0.5731 | 0.5181 | 0.4679 | 0.4222 | 0.3612 | 0.2771 | |
2 | Zenkour [19] | ≠ 0 | 1.1944 | 1.0859 | 0.9864 | 0.8952 | 0.7726 | 0.6017 |
Zenkour [19] | = 0 | 1.1879 | 1.0739 | 0.9700 | 0.8754 | 0.7493 | 0.5757 | |
Mantari and Soares [26] | ≠ 0 | 1.1940 | 1.0794 | 0.9750 | 0.8799 | 0.7537 | 0.5786 | |
Mantari and Soares [26] | = 0 | 1.2776 | 1.1553 | 1.0441 | 0.9430 | 0.8092 | 0.6237 | |
Akavci and Tanrikulu [31] | = 0 | 1.2763 | 1.1541 | 1.0431 | 0.9422 | 0.8079 | 0.6234 | |
Akavci and Tanrikulu [31] | ≠ 0 | 1.1938 | 1.0765 | 0.9723 | 0.8775 | 0.7511 | 0.5771 | |
Younsi et al. [39] | = 0 | 1.2768 | 1.1546 | 1.0435 | 0.9426 | 0.8082 | 0.6236 | |
Younsi et al. [39] | ≠ 0 | 1.1917 | 1.0774 | 0.9731 | 0.8782 | 0.7517 | 0.5775 | |
Present study | = 0 | 1.2753 | 1.1532 | 1.0423 | 0.9415 | 0.8074 | 0.6231 | |
Present study | ≠ 0 | 1.1880 | 1.0740 | 0.9701 | 0.8755 | 0.7494 | 0.5758 | |
3 | Zenkour [19] | ≠ 0 | 1.4429 | 1.3116 | 1.9112 | 1.0811 | 0.9333 | 0.7275 |
Zenkour [19] | = 0 | 1.4354 | 1.2977 | 1.1722 | 1.0579 | 0.9056 | 0.6961 | |
Mantari and Soares [26] | ≠ 0 | 1.4421 | 1.3037 | 1.1776 | 1.0627 | 0.9104 | 0.6992 | |
Mantari and Soares [26] | = 0 | 1.5340 | 1.3873 | 1.2540 | 1.1329 | 0.9725 | 0.7506 | |
Akavci and Tanrikulu [31] | = 0 | 1.5327 | 1.3861 | 1.2530 | 1.1320 | 0.9712 | 0.7503 | |
Akavci and Tanrikulu [31] | ≠ 0 | 1.4386 | 1.3005 | 1.1748 | 1.0602 | 0.9076 | 0.6976 | |
Younsi et al. [39] | = 0 | 1.5332 | 1.3866 | 1.2534 | 1.1324 | 0.9715 | 0.7504 | |
Younsi et al. [39] | ≠ 0 | 1.4396 | 1.3015 | 1.1756 | 1.0610 | 0.9082 | 0.6981 | |
Present study | = 0 | 1.5316 | 1.3852 | 1.2521 | 1.1313 | 0.9706 | 0.7499 | |
Present study | ≠ 0 | 1.4354 | 1.2977 | 1.1722 | 1.0579 | 0.9057 | 0.6961 |
b/a | Theory | εz | k | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
0.1 | 0.3 | 0.5 | 0.7 | 1 | 1.5 | 2 | 2.5 | 3 | |||
1 | Mantari and Soares [26] | ≠ 0 | 0.2196 | 0.2345 | 0.2503 | 0.2671 | 0.2944 | 0.3460 | 0.4065 | 0.4775 | 0.5603 |
Mantari and Soares [26] | = 0 | 0.2062 | 0.2204 | 0.2355 | 0.2515 | 0.2774 | 0.3264 | 0.3835 | 0.4502 | 0.5278 | |
Akavci and Tanrikulu [31] | = 0 | 0.2063 | 0.2205 | 0.2356 | 0.2516 | 0.2776 | 0.3266 | 0.3838 | 0.4504 | 0.5281 | |
Akavci and Tanrikulu [31] | ≠ 0 | 0.2142 | 0.2285 | 0.2438 | 0.2601 | 0.2866 | 0.3370 | 0.3964 | 0.4664 | 0.5485 | |
Younsi et al. [39] | = 0 | 0.2063 | 0.2205 | 0.2355 | 0.2516 | 0.2775 | 0.3265 | 0.3837 | 0.4504 | 0.5279 | |
Younsi et al. [39] | ≠ 0 | 0.2137 | 0.2280 | 0.2433 | 0.2595 | 0.2860 | 0.3363 | 0.3957 | 0.4657 | 0.5478 | |
Present study | = 0 | 0.2063 | 0.2205 | 0.2356 | 0.2517 | 0.2776 | 0.3266 | 0.3838 | 0.4505 | 0.5282 | |
Present study | ≠ 0 | 0.2195 | 0.2344 | 0.2502 | 0.2670 | 0.2943 | 0.4359 | 0.4064 | 0.4773 | 0.5602 | |
2 | Mantari and Soares [26] | ≠ 0 | 0.4552 | 0.4867 | 0.5200 | 0.5554 | 0.6126 | 0.7201 | 0.8449 | 0.9898 | 1.1580 |
Mantari and Soares [26] | = 0 | 0.4350 | 0.4649 | 0.4966 | 0.5303 | 0.5850 | 0.6881 | 0.8085 | 0.9490 | 1.1125 | |
Akavci and Tanrikulu [31] | = 0 | 0.4351 | 0.4650 | 0.4968 | 0.5305 | 0.5852 | 0.6884 | 0.8088 | 0.9493 | 1.1129 | |
Akavci and Tanrikulu [31] | ≠ 0 | 0.4466 | 0.4773 | 0.5098 | 0.5443 | 0.6002 | 0.7058 | 0.8289 | 0.9725 | 1.1397 | |
Younsi et al. [39] | = 0 | 0.4351 | 0.4650 | 0.4967 | 0.5305 | 0.5851 | 0.6883 | 0.8087 | 0.9492 | 1.1128 | |
Younsi et al. [39] | ≠ 0 | 0.4459 | 0.4765 | 0.5090 | 0.5435 | 0.5993 | 0.7048 | 0.8278 | 0.8278 | 1.1388 | |
Present study | = 0 | 0.4351 | 0.4650 | 0.4968 | 0.5306 | 0.5852 | 0.6884 | 0.8089 | 0.9494 | 1.1131 | |
Present study | ≠ 0 | 0.4551 | 0.4865 | 0.5199 | 0.5553 | 0.6124 | 0.7199 | 0.8447 | 0.9897 | 1.1579 | |
3 | Mantari and Soares [26] | ≠ 0 | 0.5514 | 0.5896 | 0.6302 | 0.6733 | 0.7427 | 0.8730 | 1.0240 | 1.1990 | 1.4017 |
Mantari and Soares [26] | = 0 | 0.5288 | 0.5651 | 0.6037 | 0.6447 | 0.7112 | 0.8365 | 0.9828 | 1.1536 | 1.3523 | |
Akavci and Tanrikulu [31] | = 0 | 0.5290 | 0.5653 | 0.6039 | 0.6449 | 0.7114 | 0.8368 | 0.9832 | 1.1540 | 1.3528 | |
Akavci and Tanrikulu [31] | ≠ 0 | 0.5418 | 0.5791 | 0.6187 | 0.6608 | 0.7289 | 0.8570 | 1.0061 | 1.1797 | 1.3813 | |
Younsi et al. [39] | = 0 | 0.5289 | 0.5652 | 0.6038 | 0.6449 | 0.7113 | 0.8367 | 0.9831 | 1.1538 | 1.3527 | |
Younsi et al. [39] | ≠ 0 | 0.5410 | 0.5783 | 0.6179 | 0.6599 | 0.7279 | 0.8559 | 1.0050 | 1.1786 | 1.3803 | |
Present study | = 0 | 0.5290 | 0.5653 | 0.6039 | 0.6450 | 0.7114 | 0.8368 | 0.9833 | 1.1541 | 1.3529 | |
Present study | ≠ 0 | 0.5512 | 0.5895 | 0.6300 | 0.6731 | 0.7425 | 0.8728 | 1.0238 | 1.1988 | 1.4016 |
b/a | Theory | εz | k | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
0.1 | 0.3 | 0.5 | 0.7 | 1 | 1.5 | 2 | 2.5 | 3 | |||
1 | Mantari and Soares [26] | ≠ 0 | 0.2454 | 0.2450 | 0.2442 | 0.2430 | 0.2405 | 0.2344 | 0.2263 | 0.2162 | 0.2045 |
Mantari and Soares [26] | = 0 | 0.2380 | 0.2376 | 0.2368 | 0.2356 | 0.2330 | 0.2268 | 0.2185 | 0.2094 | 0.1985 | |
Akavci and Tanrikulu [31] | = 0 | 0.2434 | 0.2430 | 0.2422 | 0.2410 | 0.2385 | 0.2324 | 0.2242 | 0.2140 | 0.2023 | |
Akavci and Tanrikulu [31] | ≠ 0 | 0.2367 | 0.2364 | 0.2359 | 0.2353 | 0.2338 | 0.2300 | 0.2249 | 0.2182 | 0.2102 | |
Younsi et al. [39] | = 0 | 0.2416 | 0.2412 | 0.2404 | 0.2392 | 0.2366 | 0.2305 | 0.2222 | 0.2121 | 0.2003 | |
Younsi et al. [39] | ≠ 0 | 0.2371 | 0.2369 | 0.2364 | 0.2357 | 0.2342 | 0.2304 | 0.2252 | 0.2186 | 0.2105 | |
Present study | = 0 | 0.2461 | 0.2457 | 0.2449 | 0.2437 | 0.2412 | 0.2351 | 0.2269 | 0.2168 | 0.2051 | |
Present study | ≠ 0 | 0.2357 | 0.2354 | 0.2350 | 0.2343 | 0.2328 | 0.2291 | 0.2240 | 0.2174 | 0.2094 | |
2 | Mantari and Soares [26] | ≠ 0 | 0.3927 | 0.3921 | 0.3908 | 0.3889 | 0.3849 | 0.3752 | 0.3621 | 0.3460 | 0.3273 |
Mantari and Soares [26] | = 0 | 0.3810 | 0.3803 | 0.3790 | 0.3770 | 0.3730 | 0.3630 | 0.3497 | 0.3344 | 0.3165 | |
Akavci and Tanrikulu [31] | = 0 | 0.3896 | 0.3889 | 0.3877 | 0.3857 | 0.3817 | 0.3719 | 0.3588 | 0.3425 | 0.3237 | |
Akavci and Tanrikulu [31] | ≠ 0 | 0.3790 | 0.3787 | 0.3779 | 0.3768 | 0.3744 | 0.3684 | 0.3602 | 0.3496 | 0.3368 | |
Younsi et al. [39] | = 0 | 0.3867 | 0.3860 | 0.3847 | 0.3828 | 0.3787 | 0.3689 | 0.3557 | 0.3394 | 0.3206 | |
Younsi et al. [39] | ≠ 0 | 0.3797 | 0.3793 | 0.3786 | 0.3774 | 0.3750 | 0.3691 | 0.3608 | 0.3501 | 0.3373 | |
Present study | = 0 | 0.3939 | 0.3933 | 0.3920 | 0.3901 | 0.3860 | 0.3763 | 0.3632 | 0.3470 | 0.3282 | |
Present study | ≠ 0 | 0.3774 | 0.3770 | 0.3763 | 0.3752 | 0.3728 | 0.3669 | 0.3587 | 0.3482 | 0.3355 | |
3 | Mantari and Soares [26] | ≠ 0 | 0.4418 | 0.4411 | 0.4396 | 0.4375 | 0.4330 | 0.4221 | 0.4074 | 0.3893 | 0.3683 |
Mantari and Soares [26] | = 0 | 0.4286 | 0.4279 | 0.4264 | 0.4242 | 0.4196 | 0.4084 | 0.3934 | 0.3761 | 0.3558 | |
Akavci and Tanrikulu [31] | = 0 | 0.4383 | 0.4376 | 0.4361 | 0.4340 | 0.4294 | 0.4185 | 0.4036 | 0.3854 | 0.3642 | |
Akavci and Tanrikulu [31] | ≠ 0 | 0.4265 | 0.4261 | 0.4252 | 0.4239 | 0.4212 | 0.4146 | 0.4053 | 0.3934 | 0.3789 | |
Younsi et al. [39] | = 0 | 0.4350 | 0.4343 | 0.4328 | 0.4307 | 0.4261 | 0.4151 | 0.4002 | 0.3819 | 0.3607 | |
Younsi et al. [39] | ≠ 0 | 0.4273 | 0.4268 | 0.4260 | 0.4247 | 0.4220 | 0.4153 | 0.4059 | 0.3940 | 0.3795 | |
Present study | = 0 | 0.4432 | 0.4425 | 0.4410 | 0.4389 | 0.4343 | 0.4234 | 0.4086 | 0.3904 | 0.3693 | |
Present study | ≠ 0 | 0.4246 | 0.4242 | 0.4234 | 0.4221 | 0.4194 | 0.4128 | 0.4036 | 0.3918 | 0.3775 |
h/a | Quantity | Theory | E0/E1 | ||||
---|---|---|---|---|---|---|---|
0.1 | 0.5 | 1 | 2 | 10 | |||
0.2 | Vaghefi et al. [58] (BEM) | 4.0916 | 8.9751 | 12.5990 | 17.6640 | 39.0600 | |
Vaghefi et al. [58] (FEM) | 4.1215 | 9.0047 | 12.6130 | 17.7110 | 39.1550 | ||
Akavci and Tanrikulu [31] () | 3.8333 | 8.8724 | 12.5970 | 17.7440 | 38.3330 | ||
Younsi et al. [39] () | 3.8345 | 8.8756 | 12.6025 | 17.7511 | 38.3451 | ||
Present study (= 0) | 4.1011 | 9.1087 | 12.8653 | 18.2171 | 41.0098 | ||
Present study () | 3.8265 | 8.8560 | 12.5740 | 17.7123 | 38.2668 | ||
(−h/2) | Vaghefi et al. [58] (BEM) | −15.356 | −9.2902 | −7.4462 | −5.9410 | −3.4665 | |
Vaghefi et al. [58] (FEM) | −15.403 | −9.2995 | −7.4588 | −5.9591 | −3.4805 | ||
Akavci and Tanrikulu [31] () | −16.3220 | −9.6545 | −7.6944 | −6.1109 | −3.4530 | ||
Younsi et al. [39] () | −16.2898 | −9.6313 | −7.6770 | −6.0994 | −3.4504 | ||
Present study (= 0) | −15.6820 | −9.2913 | −7.3718 | −5.8141 | −3.2271 | ||
Present study () | −16.6927 | −9.8955 | −7.8723 | −6.2318 | −3.4891 | ||
0.3 | Vaghefi et al. [58] (BEM) | 0.9707 | 2.1378 | 2.9853 | 4.1208 | 8.7134 | |
Vaghefi et al. [58] (FEM) | 0.9732 | 2.1407 | 2.9792 | 4.1333 | 8.7293 | ||
Akavci and Tanrikulu [31] () | 0.8923 | 2.0834 | 2.9602 | 4.1669 | 8.9229 | ||
Younsi et al. [39] () | 0.8925 | 2.0843 | 2.9615 | 4.1685 | 8.9253 | ||
Present study (= 0) | 0.9602 | 2.1772 | 3.0822 | 4.3543 | 9.6015 | ||
Present study () | 0.8908 | 2.0798 | 2.9549 | 4.1595 | 8.9080 | ||
Vaghefi et al. [58] (BEM) | −7.223 | −4.3084 | −3.4496 | −2.7499 | −1.6449 | ||
Vaghefi et al. [58] (FEM) | −7.2639 | −4.3378 | −3.4681 | −2.7673 | −1.6499 | ||
Akavci and Tanrikulu [31] () | −7.6576 | −4.5062 | −3.5748 | −2.8235 | −1.5731 | ||
Younsi et al. [39] () | −7.6386 | −4.4941 | −3.5659 | −2.8175 | −1.5715 | ||
Present study (= 0) | −7.2499 | −4.2796 | −3.3846 | −2.6589 | −1.4605 | ||
Present study () | −7.7999 | −4.5974 | −3.6421 | −2.8693 | −1.5869 |
a/h = 10 | a/h = 200 | ||||||||
---|---|---|---|---|---|---|---|---|---|
Thai et al. [24] | Al Khateeb and Zenkour [28] | Present 2D | Present Quasi-3D | Thai et al. [24] | Al Khateeb and Zenkour [28] | Present 2D | Present Quasi-3D | ||
1 | 5 | 3.3455 | 3.18068 | 3.3452 | 3.3302 | 3.2200 | 3.21959 | 3.2200 | 3.2117 |
10 | 2.7504 | 2.61977 | 2.7503 | 2.7452 | 2.6684 | 2.66809 | 2.6684 | 2.6628 | |
15 | 2.3331 | 2.2253 | 2.3330 | 2.3329 | 2.2763 | 2.27602 | 2.2763 | 2.2722 | |
20 | 2.0244 | 1.93304 | 2.0243 | 2.0270 | 1.9834 | 1.98317 | 1.9834 | 1.9803 | |
34 | 5 | 2.8421 | 2.70699 | 2.8420 | 2.8358 | 2.7552 | 2.75485 | 2.7552 | 2.7491 |
10 | 2.3983 | 2.28765 | 2.3982 | 2.3977 | 2.3390 | 2.33866 | 2.3389 | 2.3346 | |
15 | 2.0730 | 1.97963 | 2.0729 | 2.0754 | 2.0306 | 2.03037 | 2.0306 | 2.0274 | |
20 | 1.8244 | 1.74394 | 1.8244 | 1.8286 | 1.7932 | 1.79298 | 1.7932 | 1.7907 | |
54 | 5 | 1.3785 | 1.32344 | 1.3784 | 1.3854 | 1.3688 | 1.36864 | 1.3688 | 1.3674 |
10 | 1.2615 | 1.21169 | 1.2614 | 1.2684 | 1.2543 | 1.25412 | 1.2542 | 1.2531 | |
15 | 1.1627 | 1.11725 | 1.1627 | 1.1694 | 1.1572 | 1.15711 | 1.1572 | 1.1562 | |
20 | 1.0782 | 1.03638 | 1.0782 | 1.0847 | 1.0740 | 1.07389 | 1.0740 | 1.0732 |
k | K0 | J0 | Method | σxy∗ | |||||
---|---|---|---|---|---|---|---|---|---|
0 | 0 | 0 | Zenkour [20] | 0.1972 | 0.1022 | 1.2583 | 0.7162 | 0.2448 | 0.2893 |
Thai and Choi [29] | 0.1971 | 0.1022 | 1.2583 | 0.7160 | 0.2447 | 0.2890 | |||
Present 2D | 0.1972 | 0.1021 | 1.2582 | 0.7159 | 0.2442 | 0.2869 | |||
Present Quasi-3D | 0.1953 | 0.1009 | 1.2503 | 0.8755 | 0.4074 | 0.2823 | |||
100 | 0 | Zenkour [20] | 0.1922 | 0.1003 | 1.2259 | 0.6970 | 0.2376 | 0.2843 | |
Thai and Choi [29] | 0.1922 | 0.1003 | 1.2260 | 0.6969 | 0.2375 | 0.2840 | |||
Present 2D | 0.1922 | 0.1002 | 1.2259 | 0.6967 | 0.2370 | 0.2819 | |||
Present Quasi-3D | 0.1905 | 0.0991 | 1.2186 | 0.8523 | 0.3959 | 0.2774 | |||
0 | 100 | Zenkour [20] | 0.1830 | 0.0967 | 1.1662 | 0.6619 | 0.2245 | 0.2746 | |
Thai and Choi [29] | 0.1830 | 0.0967 | 1.1662 | 0.6618 | 0.2245 | 0.2744 | |||
Present 2D | 0.1830 | 0.0966 | 1.1661 | 0.6616 | 0.2239 | 0.2723 | |||
Present Quasi-3D | 0.1815 | 0.0955 | 1.1599 | 0.8097 | 0.3749 | 0.2681 | |||
100 | 100 | Zenkour [20] | 0.1787 | 0.0951 | 1.1382 | 0.6453 | 0.2184 | 0.2702 | |
Thai and Choi [29] | 0.1787 | 0.0951 | 1.1382 | 0.6452 | 0.2183 | 0.2700 | |||
Present 2D | 0.1787 | 0.0950 | 1.1381 | 0.6451 | 0.2178 | 0.2679 | |||
Present Quasi-3D | 0.1772 | 0.0939 | 1.1323 | 0.7895 | 0.3650 | 0.2638 | |||
0.5 | 0 | 0 | Zenkour [20] | 0.3492 | 0.1810 | 1.9344 | 0.2337 | 0.0799 | 0.0941 |
Thai and Choi [29] | 0.3491 | 0.1809 | 1.9345 | 0.2337 | 0.0799 | 0.0941 | |||
Present 2D | 0.3492 | 0.1807 | 1.9343 | 0.2336 | 0.0797 | 0.0934 | |||
Present Quasi-3D | 0.3346 | 0.1729 | 1.8995 | 0.2763 | 0.1286 | 0.0891 | |||
100 | 0 | Zenkour [20] | 0.3358 | 0.1759 | 1.8590 | 0.2242 | 0.0763 | 0.0916 | |
Thai and Choi [29] | 0.3358 | 0.1758 | 1.8590 | 0.2242 | 0.0763 | 0.0916 | |||
Present 2D | 0.3358 | 0.1756 | 1.8589 | 0.2242 | 0.0761 | 0.0910 | |||
Present Quasi-3D | 0.3221 | 0.1681 | 1.8271 | 0.2653 | 0.1231 | 0.0867 | |||
0 | 100 | Zenkour [20] | 0.3120 | 0.1665 | 1.7248 | 0.2075 | 0.0701 | 0.0871 | |
Thai and Choi [29] | 0.3119 | 0.1665 | 1.7248 | 0.2075 | 0.0701 | 0.0870 | |||
Present 2D | 0.3120 | 0.1663 | 1.7247 | 0.2074 | 0.0699 | 0.0864 | |||
Present Quasi-3D | 0.2997 | 0.1593 | 1.6980 | 0.2458 | 0.1136 | 0.0824 | |||
100 | 100 | Zenkour [20] | 0.3013 | 0.1623 | 1.6640 | 0.1999 | 0.0673 | 0.0850 | |
Thai and Choi [29] | 0.3012 | 0.1623 | 1.6640 | 0.1999 | 0.0673 | 0.0850 | |||
Present 2D | 0.3013 | 0.1621 | 1.6639 | 0.1998 | 0.0671 | 0.0843 | |||
Present Quasi-3D | 0.2896 | 0.1554 | 1.6394 | 0.2369 | 0.1092 | 0.0805 | |||
1 | 0 | 0 | Zenkour [20] | 0.4855 | 0.2515 | 2.5133 | 0.3250 | 0.1111 | 0.1307 |
Thai and Choi [29] | 0.4854 | 0.2515 | 2.5134 | 0.3250 | 0.1111 | 0.1306 | |||
Present 2D | 0.4854 | 0.2512 | 2.5132 | 0.3249 | 0.1108 | 0.1298 | |||
Present Quasi-3D | 0.4544 | 0.2347 | 2.4287 | 0.3752 | 0.1746 | 0.1209 | |||
100 | 0 | Zenkour [20] | 0.4617 | 0.2424 | 2.3874 | 0.3081 | 0.1047 | 0.1263 | |
Thai and Choi [29] | 0.4616 | 0.2424 | 2.3875 | 0.3080 | 0.1047 | 0.1262 | |||
Present 2D | 0.4616 | 0.2421 | 2.3873 | 0.3080 | 0.1045 | 0.1254 | |||
Present Quasi-3D | 0.4329 | 0.2265 | 2.3115 | 0.3563 | 0.1652 | 0.1170 | |||
0 | 100 | Zenkour [20] | 0.4204 | 0.2262 | 2.1702 | 0.2791 | 0.0940 | 0.1183 | |
Thai and Choi [29] | 0.4203 | 0.2261 | 2.1703 | 0.2791 | 0.0940 | 0.1182 | |||
Present 2D | 0.4204 | 0.2258 | 2.1701 | 0.2790 | 0.0938 | 0.1174 | |||
Present Quasi-3D | 0.3955 | 0.2118 | 2.1083 | 0.3238 | 0.1493 | 0.1097 | |||
100 | 100 | Zenkour [20] | 0.4023 | 0.2191 | 2.0746 | 0.2663 | 0.0893 | 0.1148 | |
Thai and Choi [29] | 0.4022 | 0.2190 | 2.0746 | 0.2663 | 0.0893 | 0.1148 | |||
Present 2D | 0.4023 | 0.2188 | 2.0745 | 0.2662 | 0.0890 | 0.1139 | |||
Present Quasi-3D | 0.3790 | 0.2054 | 2.0184 | 0.3093 | 0.1422 | 0.1066 | |||
2 | 0 | 0 | Zenkour [20] | 0.6565 | 0.3401 | 3.2267 | 0.4396 | 0.1502 | 0.1766 |
Thai and Choi [29] | 0.6564 | 0.3400 | 3.2266 | 0.4395 | 0.1502 | 0.1766 | |||
Present 2D | 0.6565 | 0.3397 | 3.2266 | 0.4394 | 0.1499 | 0.1755 | |||
Present Quasi-3D | 0.6025 | 0.3113 | 3.0706 | 0.4975 | 0.2315 | 0.1604 | |||
100 | 0 | Zenkour [20] | 0.6157 | 0.3245 | 3.0219 | 0.4106 | 0.1394 | 0.1690 | |
Thai and Choi [29] | 0.6156 | 0.3244 | 3.0218 | 0.4105 | 0.1394 | 0.1690 | |||
Present 2D | 0.6157 | 0.3241 | 3.0218 | 0.4104 | 0.1390 | 0.1679 | |||
Present Quasi-3D | 0.5669 | 0.2977 | 2.8854 | 0.4661 | 0.2160 | 0.1538 | |||
0 | 100 | Zenkour [20] | 0.5476 | 0.2975 | 2.6814 | 0.3628 | 0.1217 | 0.1557 | |
Thai and Choi [29] | 0.5475 | 0.2974 | 2.6814 | 0.3628 | 0.1217 | 0.1557 | |||
Present 2D | 0.5475 | 0.2971 | 2.6813 | 0.3627 | 0.1214 | 0.1546 | |||
Present Quasi-3D | 0.5069 | 0.2740 | 2.5748 | 0.4141 | 0.1904 | 0.1421 | |||
100 | 100 | Zenkour [20] | 0.5187 | 0.2861 | 2.5364 | 0.3423 | 0.1142 | 0.1502 | |
Thai and Choi [29] | 0.5186 | 0.2860 | 2.5364 | 0.3423 | 0.1142 | 0.1501 | |||
Present 2D | 0.5187 | 0.2856 | 2.5363 | 0.3422 | 0.1138 | 0.1490 | |||
Present Quasi-3D | 0.4813 | 0.2639 | 2.4415 | 0.3916 | 0.1794 | 0.1372 | |||
5 | 0 | 0 | Zenkour [20] | 0.7805 | 0.4045 | 3.8517 | 0.5224 | 0.1785 | 0.2104 |
Thai and Choi [29] | 0.7802 | 0.4043 | 3.8506 | 0.5223 | 0.1785 | 0.2103 | |||
Present 2D | 0.7804 | 0.4040 | 3.8516 | 0.5222 | 0.1781 | 0.2089 | |||
Present Quasi-3D | 0.7198 | 0.3721 | 3.6893 | 0.5941 | 0.2765 | 0.1919 | |||
100 | 0 | Zenkour [20] | 0.7232 | 0.3825 | 3.5629 | 0.4816 | 0.1633 | 0.1997 | |
Thai and Choi [29] | 0.7230 | 0.3824 | 3.5620 | 0.4816 | 0.1633 | 0.1996 | |||
Present 2D | 0.7231 | 0.3820 | 3.5628 | 0.4816 | 0.1629 | 0.1982 | |||
Present Quasi-3D | 0.6693 | 0.3528 | 3.4247 | 0.5496 | 0.2544 | 0.1825 | |||
0 | 100 | Zenkour [20] | 0.6305 | 0.3456 | 3.0979 | 0.4168 | 0.1394 | 0.1815 | |
Thai and Choi [29] | 0.6304 | 0.3455 | 3.0972 | 0.4168 | 0.1394 | 0.1814 | |||
Present 2D | 0.6304 | 0.3451 | 3.0978 | 0.4166 | 0.1390 | 0.1800 | |||
Present Quasi-3D | 0.5868 | 0.3199 | 2.9948 | 0.4781 | 0.2194 | 0.1663 | |||
100 | 100 | Zenkour [20] | 0.5923 | 0.3304 | 2.9052 | 0.3897 | 0.1294 | 0.1741 | |
Thai and Choi [29] | 0.5922 | 0.3303 | 2.9046 | 0.3897 | 0.1294 | 0.1740 | |||
Present 2D | 0.5922 | 0.3298 | 2.9050 | 0.3895 | 0.1290 | 0.1726 | |||
Present Quasi-3D | 0.5524 | 0.3063 | 2.8153 | 0.4481 | 0.2047 | 0.1597 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zaoui, F.Z.; Ouinas, D.; Achour, B.; Touahmia, M.; Boukendakdji, M.; Latifee, E.R.; Al-Naghi, A.A.A.; Viña Olay, J.A. Mathematical Approach for Mechanical Behaviour Analysis of FGM Plates on Elastic Foundation. Mathematics 2022, 10, 4764. https://doi.org/10.3390/math10244764
Zaoui FZ, Ouinas D, Achour B, Touahmia M, Boukendakdji M, Latifee ER, Al-Naghi AAA, Viña Olay JA. Mathematical Approach for Mechanical Behaviour Analysis of FGM Plates on Elastic Foundation. Mathematics. 2022; 10(24):4764. https://doi.org/10.3390/math10244764
Chicago/Turabian StyleZaoui, Fatima Zohra, Djamel Ouinas, Belkacem Achour, Mabrouk Touahmia, Mustapha Boukendakdji, Enamur R. Latifee, Ahmed A. Alawi Al-Naghi, and Jaime Aurelio Viña Olay. 2022. "Mathematical Approach for Mechanical Behaviour Analysis of FGM Plates on Elastic Foundation" Mathematics 10, no. 24: 4764. https://doi.org/10.3390/math10244764
APA StyleZaoui, F. Z., Ouinas, D., Achour, B., Touahmia, M., Boukendakdji, M., Latifee, E. R., Al-Naghi, A. A. A., & Viña Olay, J. A. (2022). Mathematical Approach for Mechanical Behaviour Analysis of FGM Plates on Elastic Foundation. Mathematics, 10(24), 4764. https://doi.org/10.3390/math10244764