A Refined Jensen Inequality Connected to an Arbitrary Positive Finite Sequence
Abstract
:1. Introduction
2. Refinement of Jensen’s Inequality
3. Applications for Mean Inequalities
4. Applications in Information Theory
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Horváth, L.; Khan, K.A.; Pečarić, J. Cyclic refinements of the discrete and integral form of Jensen’s inequality with applications. Analysis 2016, 36, 253–263. [Google Scholar] [CrossRef]
- Cloud, M.J.; Drachman, B.C.; Lebedev, L.P. Inequalities with Applications to Engineering; Springer: Cham, Switzerland; Heidelberg, Germany; New York, NY, USA; Dordrecht, The Netherlands; London, UK, 2014. [Google Scholar]
- Liao, J.G.; Berg, A. Sharpening Jensen’s Inequality. Am. Stat. 2018, 4, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Lakshmikantham, V.; Vatsala, A.S. Theory of Differential and Integral Inequalities with Initial Time Difference and Applications; Springer: Berlin, Germany, 1999. [Google Scholar]
- Lin, Q. Jensen inequality for superlinear expectations. Stat. Probabil. Lett. 2019, 151, 79–83. [Google Scholar] [CrossRef]
- Zhao, T.-H.; Wang, M.-K.; Chu, Y.-M. Concavity and bounds involving generalized elliptic integral of the first kind. J. Math. Inequal. 2021, 15, 701–724. [Google Scholar] [CrossRef]
- Zhao, T.-H.; Wang, M.-K.; Chu, Y.-M. Monotonicity and convexity involving generalized elliptic integral of the first kind. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. 2021, 115, 46. [Google Scholar] [CrossRef]
- Pečarić, J.; Proschan, F.; Tong, Y.L. Convex Functions, Partial Orderings and Statistical Applications; Academic Press, Inc.: Cambridge, MA, USA, 1992. [Google Scholar]
- Jensen, J.L.W.V. Sur les fonctions convexes et les inegalités entre les valeurs moyennes. Acta Math. 1906, 30, 175–193. [Google Scholar] [CrossRef]
- Azar, S.A. Jensen’s inequality in finance. Int. Adv. Econ. Res. 2008, 14, 433–440. [Google Scholar] [CrossRef]
- Ruel, J.J.; Ayres, M.P. Jensen’s inequality predicts effects of environmental variation. Trends Ecol. Evol. 1999, 14, 361–366. [Google Scholar] [CrossRef]
- Khan, S.; Khan, M.A.; Chu, Y.-M. Converses of the Jensen inequality derived from the Green functions with applications in information theory. Math. Method. Appl. Sci. 2020, 43, 2577–2587. [Google Scholar] [CrossRef]
- Saeed, T.; Khan, M.A.; Ullah, H. Refinements of Jensen’s inequality and applications. AIMS Math. 2022, 7, 5328–5346. [Google Scholar] [CrossRef]
- Ullah, H.; Khan, M.A.; Saeed, T. Determination of bounds for the Jensen gap and its applications. Mathematics 2021, 9, 3132. [Google Scholar] [CrossRef]
- Steffensen, J.F. On certain inequalities and methods of approximation. J. Inst. Actuar. 1919, 51, 274–297. [Google Scholar] [CrossRef]
- Slater, M.L. A companion inequality to Jensen’s inequality. J. Approx. Theory 1981, 32, 160–166. [Google Scholar] [CrossRef] [Green Version]
- Pečarić, J.E. A companion to Jensen-Steffensen’s inequality. J. Approx. Theory 1985, 44, 289–291. [Google Scholar] [CrossRef] [Green Version]
- Pečarić, J.E. A multidimensional generalization of Slater’s inequality. J. Approx. Theory 1985, 44, 292–294. [Google Scholar] [CrossRef] [Green Version]
- Mercer, A.M. A variant of Jensen’s inequality. JIPAM 2003, 4, 73. [Google Scholar]
- Niezgoda, M. A generalization of Mercer’s result on convex functions. Nonlinear Anal. 2009, 71, 2771–2779. [Google Scholar] [CrossRef]
- Dragomir, S.S. A new refinement of Jensen’s inequality in linear spaces with applications. Math. Comput. Model. 2010, 52, 1497–1505. [Google Scholar] [CrossRef] [Green Version]
- Dragomir, S.S. A refinement of Jensen’s inequality with applications for f-divergence measures. Taiwan. J. Math. 2010, 14, 153–164. [Google Scholar] [CrossRef]
- Csiszár, I. Information-type measures of differences of probability distributions and indirect observations. Stud. Sci. Math. Hung. 1967, 2, 299–318. [Google Scholar]
- Pečarić, D.; Pečarić, J.; Rodić, M. About the sharpness of the Jensen inequality. J. Inequal. Appl. 2018, 2018, 337. [Google Scholar] [CrossRef] [PubMed]
- Mandelbrot, B. Information Theory and Psycholinguistics: A Theory of Words Frequencies. In Reading in Mathematical Social Scence; Lazafeld, P., Henry, N., Eds.; MIT Press: Cambridge, MA, USA, 1966. [Google Scholar]
- Montemurro, M.A. Beyond the Zipf-Mandelbrot law in quantitative linguistics. arXiv 2001, arXiv:cond-mat/0104066v2. [Google Scholar] [CrossRef]
- Mouillot, D.; Lepretre, A. Introduction of relative abundance distribution (RAD) indices, estimated from the rank-frequency diagrams (RFD), to assess changes in community diversity. Environ. Monit. Assess. 2000, 63, 279–295. [Google Scholar] [CrossRef]
- Silagadze, Z.K. Citations and the Zipf-Mandelbrot Law. Complex Syst. 1997, 11, 487–499. [Google Scholar]
- Manin, D. Mandelbrot’s Model for Zipf’s Law: Can Mandelbrot’s Model Explain Zipf’s Law for Language. J. Quant. Linguist. 2009, 16, 274–285. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, S.; Khan, M.A.; Saeed, T.; Sayed, Z.M.M.M. A Refined Jensen Inequality Connected to an Arbitrary Positive Finite Sequence. Mathematics 2022, 10, 4817. https://doi.org/10.3390/math10244817
Wu S, Khan MA, Saeed T, Sayed ZMMM. A Refined Jensen Inequality Connected to an Arbitrary Positive Finite Sequence. Mathematics. 2022; 10(24):4817. https://doi.org/10.3390/math10244817
Chicago/Turabian StyleWu, Shanhe, Muhammad Adil Khan, Tareq Saeed, and Zaid Mohammed Mohammed Mahdi Sayed. 2022. "A Refined Jensen Inequality Connected to an Arbitrary Positive Finite Sequence" Mathematics 10, no. 24: 4817. https://doi.org/10.3390/math10244817
APA StyleWu, S., Khan, M. A., Saeed, T., & Sayed, Z. M. M. M. (2022). A Refined Jensen Inequality Connected to an Arbitrary Positive Finite Sequence. Mathematics, 10(24), 4817. https://doi.org/10.3390/math10244817