Improvement of Furuta’s Inequality with Applications to Numerical Radius
Abstract
:1. Introduction and Background
2. Refinement of the Cauchy–Schwarz Inequality
3. Applications to Numerical Radius Inequalities
4. Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gustafson, K.E.; Rao, D.K.M. Numerical Range, The Field of Values of Linear Operators and Matrices; Springer: New York, NY, USA, 1997. [Google Scholar]
- Alomari, M.W. On Cauchy—Schwarz type inequalities and applications to numerical radius inequalities. Ric. Mat. 2023; in press. [Google Scholar] [CrossRef]
- Bakherad, M. Some generalized numerical radius inequalities involving Kwong functions. Hacet. J. Math. Stat. 2019, 48, 951–958. [Google Scholar] [CrossRef]
- Nikzat, E.; Omidvar, M.E. Refinements of numerical radius inequalities using the Kantorovich ratio. Concr. Oper. 2022, 9, 70–74. [Google Scholar] [CrossRef]
- Guesba, M. On some numerical radius inequalities for normal operators in Hilbert spaces. J. Interdiscip. Math. 2022, 25, 463–470. [Google Scholar] [CrossRef]
- Sheikhhosseini, A.; Khosravi, M.; Sababheh, M. The weighted numerical radius. Ann. Funct. Anal. 2022, 13, 3. [Google Scholar] [CrossRef]
- Bhunia, P.; Paul, K. Some improvements of numerical radius inequalities of operators and operator matrices. Linear Multilinear Algebra 2022, 70, 1995–2013. [Google Scholar] [CrossRef]
- Feki, K.; Kittaneh, F. Some new refinements of generalized numerical radius inequalities for Hilbert space operators. Mediterr. J. Math. 2022, 19, 17. [Google Scholar] [CrossRef]
- Sababheh, M.; Moradi, H.R. More accurate numerical radius inequalities (I). Linear Multilinear Algebra 2021, 69, 1964–1973. [Google Scholar] [CrossRef]
- Moradi, H.R.; Sababheh, M. More accurate numerical radius inequalities (II). Linear Multilinear Algebra 2021, 69, 921–933. [Google Scholar] [CrossRef] [Green Version]
- Bhunia, P.; Bag, S.; Paul, K. Numerical radius inequalities of operator matrices with applications. Linear Multilinear Algebra 2021, 69, 1635–1644. [Google Scholar] [CrossRef]
- Feki, K. Generalized numerical radius inequalities of operators in Hilbert spaces. Advan. Oper. Theory 2021, 6, 6. [Google Scholar] [CrossRef]
- Furuta, T.; Mićixcx, J.; Pexcxarixcx, J.; Seo, Y. Mond–Pečarić Method in Operator Inequalities; Element: Zagreb, Croatia, 2005. [Google Scholar]
- Aujla, J.; Silva, F. Weak majorization inequalities and convex functions. Linear Algebra Appl. 2003, 369, 217–233. [Google Scholar] [CrossRef] [Green Version]
- Kittaneh, F. Numerical radius inequalities for Hilbert space operators. Studia Math. 2005, 168, 73–80. [Google Scholar] [CrossRef] [Green Version]
- Kittaneh, F. A numerical radius inequality and an estimate for the numerical radius of the Frobenius companion matrix. Studia Math. 2003, 158, 11–17. [Google Scholar] [CrossRef] [Green Version]
- El-Haddad, M.; Kittaneh, F. Numerical radius inequalities for Hilbert space operators II. Studia Math. 2007, 182, 133–140. [Google Scholar] [CrossRef]
- Dragomir, S.S. Power inequalities for the numerical radius of a product of two operators in Hilbert spaces. Sarajevo J. Math. 2009, 5, 269–278. [Google Scholar]
- Reid, W. Symmetrizable completely continuous linear transformations in Hilbert space. Duke Math. 1951, 18, 41–56. [Google Scholar] [CrossRef]
- Kato, T. Notes on some inequalities for linear operators. Math. Ann. 1952, 125, 208–212. [Google Scholar] [CrossRef]
- Kittaneh, F. Notes on some inequalities for Hilbert Space operators. Publ. Res. Inst. Math. Sci. 1988, 24, 283–293. [Google Scholar] [CrossRef] [Green Version]
- Furuta, T. An extension of the Heinz–Kato theorem. Proc. Am. Math. Soc. 1994, 120, 785–787. [Google Scholar] [CrossRef]
- Dragomir, S.S. Some Inequalities generalizing Kato’s and Furuta’s results. Filomat 2014, 28, 179–195. [Google Scholar] [CrossRef]
- Kittaneh, F.; Moradi, H.R. Cauchy–Schwarz type inequalities and applications to numerical radius inequalities. Math. Ineq. Appl. 2020, 23, 1117–1125. [Google Scholar] [CrossRef]
- Mitrinović, D.S.; Pexcxarixcx, J.; Fink, A.M. Classical and New Inequalities in Analysis; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1993. [Google Scholar]
- Alomari, M.W.; Chesneau, C.; Leiva, V.; Martin-Barreiro, C. Improvement of some Hayashi-Ostrowski type inequalities with applications in a probability setting. Mathematics 2022, 10, 2316. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alomari, M.W.; Bakherad, M.; Hajmohamadi, M.; Chesneau, C.; Leiva, V.; Martin-Barreiro, C. Improvement of Furuta’s Inequality with Applications to Numerical Radius. Mathematics 2023, 11, 36. https://doi.org/10.3390/math11010036
Alomari MW, Bakherad M, Hajmohamadi M, Chesneau C, Leiva V, Martin-Barreiro C. Improvement of Furuta’s Inequality with Applications to Numerical Radius. Mathematics. 2023; 11(1):36. https://doi.org/10.3390/math11010036
Chicago/Turabian StyleAlomari, Mohammad W., Mojtaba Bakherad, Monire Hajmohamadi, Christophe Chesneau, Víctor Leiva, and Carlos Martin-Barreiro. 2023. "Improvement of Furuta’s Inequality with Applications to Numerical Radius" Mathematics 11, no. 1: 36. https://doi.org/10.3390/math11010036
APA StyleAlomari, M. W., Bakherad, M., Hajmohamadi, M., Chesneau, C., Leiva, V., & Martin-Barreiro, C. (2023). Improvement of Furuta’s Inequality with Applications to Numerical Radius. Mathematics, 11(1), 36. https://doi.org/10.3390/math11010036