Entropies Via Various Molecular Descriptors of Layer Structure of H3BO3
Abstract
:1. Introduction
Entropies via Various Molecular Descriptors
- Entropy related to index
- Entropy related to index
- Entropy related to Albertson index
- Entropy related to index
2. Layer Structure of
2.1. Subdivision of the Layer Structure
Result and Discussion
- Entropy related to the index of subdivision
- Entropy related to the index of subdivision
- Entropy related to the Albertson index
- Entropy related to the index of subdivision
2.2. Layer Structure of in the Form of a Line Graph
- Entropy related to the index of
- Entropy related to the index of
- Entropy related to the Albertson index of
- Entropy related to the index of
3. Comparison and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, Y.F.; Ghani, M.U.; Sultan, F.; Inc, M.; Cancan, M. Connecting SiO4 in Silicate and Silicate Chain Networks to Compute Kulli Temperature Indices. Molecules 2022, 27, 7533. [Google Scholar] [CrossRef] [PubMed]
- Chu, Y.M.; Khan, A.R.; Ghani, M.U.; Ghaffar, A.; Inc, M. Computation of Zagreb Polynomials and Zagreb Indices for Benzenoid Triangular & Hourglass System. Polycycl. Aromat. Compd. 2022, 1–10. [Google Scholar]
- De Bellis, J.; Bellucci, L.; Bottaro, G.; Labella, L.; Marchetti, F.; Samaritani, S.; Dell’Amico, D.B.; Armelao, L. Single-crystal-to-single-crystal post-synthetic modifications of three-dimensional LOFs (Ln = Gd, Eu): A way to modulate their luminescence and thermometric properties. Dalton Trans. 2020, 49, 6030–6042. [Google Scholar] [CrossRef]
- Alam, A.; Ghani, M.U.; Kamran, M.; Shazib Hameed, M.; Hussain Khan, R.; Baig, A.Q. Degree-Based Entropy for a Non-Kekulean Benzenoid Graph. J. Math. 2022. [Google Scholar]
- Mikherdov, A.S.; Novikov, A.S.; Kinzhalov, M.A.; Zolotarev, A.A.; Boyarskiy, V.P. Intra-/intermolecular bifurcated chalcogen bonding in crystal structure of thiazole/thiadiazole derived binuclear (diaminocarbene) PdII complexes. Crystals 2018, 8, 112. [Google Scholar] [CrossRef] [Green Version]
- Ranjini, P.S.; Lokesha, V.; Usha, A. Relation between phenylene and hexagonal squeeze using harmonic index. Int. J. Graph Theory 2013, 1, 116–121. [Google Scholar]
- Saeed, N.; Long, K.; Mufti, Z.S.; Sajid, H.; Rehman, A. Degree-based topological indices of boron b6(3s + 3t + 4st − 1). J. Chem. 2021. [Google Scholar] [CrossRef]
- Anjum, M.S.; Safdar, M.U. K Banhatti and K hyper-Banhatti indices of nanotubes. Eng. Appl. Sci. Lett. 2019, 2, 19–37. [Google Scholar] [CrossRef]
- Khan, A.R.; Ghani, M.U.; Ghaffar, A.; Asif, H.M. Characterization of temperature indices of silicates. Res. Sq. 2022. [Google Scholar] [CrossRef]
- Kulli, V.R.; Chaluvaraju, B.; Boregowda, H.S. Connectivity Banhatti indices for certain families of benzenoid systems. J. Ultra Chem. 2017, 13, 81–87. [Google Scholar] [CrossRef]
- Kulli, V.R. On K Banhatti indices of graphs. J. Comput. Math. Sci. 2016, 7, 213–218. [Google Scholar]
- Ghani, M.U.; Sultan, F.; El Sayed, M.; Cancan, M.; Ali, S. SiO4 characterization in a chain and C6 H6 embedded in a Non-kekulean structure for Kulli Temperature indices. Res. Sq. 2022. [Google Scholar] [CrossRef]
- Kulli, V.R. On multiplicative K Banhatti and multiplicative K hyper-Banhatti indices of Vg Phenylenic nanotubes and nanotorus. Ann. Pure Appl. Math. 2016, 11, 145–150. [Google Scholar]
- Munir, M.; Nazeer, W.; Rafique, S.; Kang, S.M. M-polynomial and degree-based topological indices of polyhex nanotubes. Symmetry 2016, 8, 149. [Google Scholar] [CrossRef] [Green Version]
- Mahmood, M.K.; Ali, S. A novel labeling algorithm on several classes of graphs. Punjab Univ. J. Math. 2017, 49, 23–35. [Google Scholar]
- Mahmood, M.K.; Ali, S. On super totient numbers, with applications and algorithms to graph labeling. Ars Comb. 2019, 143, 29–37. [Google Scholar]
- Ali, S.; Mahmood, M.K.; Shum, K.P. Novel classes of integers and their applications in graph labeling. Hacettepe J. Math. Stat 2021, 1, 1–17. [Google Scholar] [CrossRef]
- Ali, S.; Mahmmod, M.K.; Falcón Ganfornina, R.M. A paradigmatic approach to investigate restricted hyper totient graphs. AIMS Math. 2021, 6, 3761–3771. [Google Scholar] [CrossRef]
- Adonin, S.A.; Usoltsev, A.N.; Novikov, A.S.; Kolesov, B.A.; Fedin, V.P.; Sokolov, M.N. One-and two-dimensional iodine-rich iodobismuthate (III) complexes: Structure, optical properties, and features of halogen bonding in the solid state. Inorg. Chem. 2020, 59, 3290–3296. [Google Scholar] [CrossRef]
- Sakander, H. Computing distance-based topological descriptors of complex chemical networks: New theoretical techniques. Chem. Phys. Lett. 2017, 688, 51–58. [Google Scholar]
- Hu, M.; Ali, H.; Binyamin, M.A.; Ali, B.; Liu, J.B.; Fan, C. On distance-based topological descriptors of chemical interconnection networks. J. Math. 2021. [Google Scholar]
- Munir, M.; Nazeer, W.; Nizami, A.R.; Rafique, S.; Kang, S.M. M-polynomials and topological indices of titania nanotubes. Symmetry 2016, 8, 117. [Google Scholar] [CrossRef] [Green Version]
- Bashir, Y.; Aslam, A.; Kamran, M.; Qureshi, M.I.; Jahangir, A.; Rafiq, M.; Bibi, N.; Muhammad, N. On forgotten topological indices of some dendrimers structure. Molecules 2017, 22, 867. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Husin, M.N.; Hasni, R.; Arif, N.E.; Imran, M. On topological indices of certain families of nanostar dendrimers. Molecules 2016, 21, 821. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nandini, G.K.; Rajan, R.S.; Shantrinal, A.A.; Rajalaxmi, T.M.; Rajasingh, I.; Balasubramanian, K. Topological and thermodynamic entropy measures for COVID-19 pandemic through graph theory. Symmetry 2020, 12, 1992. [Google Scholar] [CrossRef]
- Deng, H.; Yang, J.; Xia, F. A general modeling of some vertex-degree based topological indices in benzenoid systems and phenylenes. Comput. Math. Appl. 2011, 61, 3017–3023. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Zhou, Z.; Shen, P.; Chen, Z. Two-dimensional polyphenylene: Experimentally available porous graphene as a hydrogen purification membrane. Chem. Commun. 2010, 46, 3672–3674. [Google Scholar] [CrossRef]
- Estrada, E.; Torres, L.; Rodriguez, L.; Gutman, I. An atom-bond connectivity index: Modelling the enthalpy of formation of alkanes. Indian J. Chem. A 1998, 37, 849–855. [Google Scholar]
- Zhou, B.; Trinajstić, N. On a novel connectivity index. J. Math. Chem. 2009, 46, 1252–1270. [Google Scholar] [CrossRef]
- Ali, A.; Furtula, B.; Redžepović, I.; Gutman, I. Atom-bond sum-connectivity index. J. Math. Chem. 2022, 60, 2081–2093. [Google Scholar] [CrossRef]
- Albertson, I.; Michael, O. The irregularity of a graph. Ars Comb. 1997, 46, 219–225. [Google Scholar]
- Hussain, Z.; Munir, M.; Rafique, S.; Min Kang, S. Topological characterizations and index-analysis of new degree-based descriptors of honeycomb networks. Symmetry 2018, 10, 478. [Google Scholar] [CrossRef] [Green Version]
- Ghani, M.U.; Sultan, F.; Tag El Din, E.S.M.; Khan, A.R.; Liu, J.B.; Cancan, M. A Paradigmatic Approach to Find the Valency-Based K-Banhatti and Redefined Zagreb Entropy for Niobium Oxide and a Metal–Organic Framework. Molecules 2022, 27, 6975. [Google Scholar] [CrossRef]
- Manzoor, S.; Siddiqui, M.K.; Ahmad, S. Computation of entropy measures for phthalocyanines and porphyrins dendrimers. Int. J. Quantum Chem. 2022, 122, e26854. [Google Scholar] [CrossRef]
- Shannon, C.E. A mathematical theory of communication. Bell Syst. Tech. J. 1948, 27, 379–423. [Google Scholar] [CrossRef]
Atomic bond type | |||
Number of atom bonds |
Atomic bonds | |||||
Cardinality |
Values of (s,t) | -Index | -Index | Albertson Index | -Index |
---|---|---|---|---|
(1, 2) | 115.948 | 120.98 | 164 | 164 |
(2, 3) | 263.004 | 275.844 | 372 | 372 |
(3, 4) | 460.964 | 484.636 | 652 | 652 |
(4, 5) | 709.828 | 747.356 | 1004 | 1004 |
(5, 6) | 1009.596 | 1064.004 | 1428 | 1428 |
(6, 7) | 1360.268 | 1434.58 | 1924 | 1924 |
(7, 8) | 1761.844 | 1859.084 | 2492 | 2492 |
(8, 9) | 2214.324 | 2337.516 | 3132 | 3132 |
(9, 10) | 2717.708 | 2869.876 | 3844 | 3844 |
(10, 11) | 3271.996 | 3456.164 | 4628 | 4628 |
(11, 12) | 3877.188 | 4096.38 | 5484 | 5484 |
(12, 13) | 4533.284 | 4790.524 | 6412 | 6412 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ghani, M.U.; Kashif Maqbool, M.; George, R.; Ofem, A.E.; Cancan, M. Entropies Via Various Molecular Descriptors of Layer Structure of H3BO3. Mathematics 2022, 10, 4831. https://doi.org/10.3390/math10244831
Ghani MU, Kashif Maqbool M, George R, Ofem AE, Cancan M. Entropies Via Various Molecular Descriptors of Layer Structure of H3BO3. Mathematics. 2022; 10(24):4831. https://doi.org/10.3390/math10244831
Chicago/Turabian StyleGhani, Muhammad Usman, Muhammad Kashif Maqbool, Reny George, Austine Efut Ofem, and Murat Cancan. 2022. "Entropies Via Various Molecular Descriptors of Layer Structure of H3BO3" Mathematics 10, no. 24: 4831. https://doi.org/10.3390/math10244831
APA StyleGhani, M. U., Kashif Maqbool, M., George, R., Ofem, A. E., & Cancan, M. (2022). Entropies Via Various Molecular Descriptors of Layer Structure of H3BO3. Mathematics, 10(24), 4831. https://doi.org/10.3390/math10244831