Synchronization of Nonlinear Complex Spatiotemporal Networks Based on PIDEs with Multiple Time Delays: A P-sD Method
Abstract
:1. Introduction
2. Problem Formulation
3. Synchronization of the MTDCSN with Time-Invariant Delays
4. Synchronization of the MTDCSN with Time-Varying Delays
5. Numerical Simulation
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Hu, C.; He, H.; Jiang, H. Fixed/preassigned-time synchronization of complex networks via improving fixed-time stability. IEEE Trans. Cybern. 2020, 51, 2882–2892. [Google Scholar] [CrossRef]
- Liu, X.; Ho, D.W.; Song, Q.; Xu, W. Finite/fixed-time pinning synchronization of complex networks with stochastic disturbances. IEEE Trans. Cybern. 2018, 49, 2398–2403. [Google Scholar] [CrossRef]
- Gan, L.; Li, S.; Duan, N.; Kong, X. Adaptive output synchronization of general complex dynamical network with time-varying delays. Mathematics 2020, 8, 311. [Google Scholar] [CrossRef] [Green Version]
- Alimi, A.M.; Aouiti, C.; Assali, E.A. Finite-time and fixed-time synchronization of a class of inertial neural networks with multi-proportional delays and its application to secure communication. Neurocomputing 2019, 332, 29–43. [Google Scholar] [CrossRef]
- Shanmugam, L.; Mani, P.; Rajan, R.; Joo, Y.H. Adaptive synchronization of reaction–diffusion neural networks and its application to secure communication. IEEE Trans. Cybern. 2018, 50, 911–922. [Google Scholar] [CrossRef] [PubMed]
- Dong, S.; Zhu, H.; Zhong, S.; Shi, K.; Lu, J. Impulsive-based almost surely synchronization for neural network systems subject to deception attacks. IEEE Trans. Neural Netw. Learn. Syst. 2021. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Li, L.; Li, X. Exponential synchronization of coupled neural networks under stochastic deception attacks. Neural Netw. 2022, 145, 189–198. [Google Scholar] [CrossRef]
- Xing, M.; Lu, J.; Qiu, J.; Shen, H. Synchronization of complex dynamical networks subject to DoS attacks: An improved coding-decoding protocol. IEEE Trans. Cybern. 2021. [Google Scholar] [CrossRef]
- Wen, S.; Zeng, Z.; Huang, T.; Zhang, Y. Exponential adaptive lag synchronization of memristive neural networks via fuzzy method and applications in pseudorandom number generators. IEEE Trans. Fuzzy Syst. 2013, 22, 1704–1713. [Google Scholar] [CrossRef]
- Mani, P.; Rajan, R.; Shanmugam, L.; Joo, Y.H. Adaptive control for fractional order induced chaotic fuzzy cellular neural networks and its application to image encryption. Inf. Sci. 2019, 491, 74–89. [Google Scholar] [CrossRef]
- Feng, Y.; Wang, Y.; Wang, J.W.; Li, H.X. Backstepping-based distributed abnormality localization for linear parabolic distributed parameter systems. Automatica 2022, 135, 109930. [Google Scholar] [CrossRef]
- Wu, H.N.; Zhang, X.M.; Wang, J.W.; Zhu, H.Y. Observer-based output feedback fuzzy control for nonlinear parabolic PDE-ODE coupled systems. Fuzzy Sets Syst. 2021, 402, 105–123. [Google Scholar] [CrossRef]
- Wang, J.W. A unified Lyapunov-based design for a dynamic compensator of linear parabolic MIMO PDEs. Int. J. Control 2021, 94, 1804–1811. [Google Scholar] [CrossRef]
- Kanakov, O.; Osipov, G.; Chan, C.K.; Kurths, J. Cluster synchronization and spatio-temporal dynamics in networks of oscillatory and excitable Luo-Rudy cells. Chaos Interdiscip. J. Nonlinear Sci. 2007, 17, 015111. [Google Scholar] [CrossRef] [PubMed]
- Kakmeni, F.M.; Baptista, M. Synchronization and information transmission in spatio-temporal networks of deformable units. Pramana 2008, 70, 1063–1076. [Google Scholar] [CrossRef] [Green Version]
- Rybalova, E.; Semenova, N.; Strelkova, G.; Anishchenko, V. Transition from complete synchronization to spatio-temporal chaos in coupled chaotic systems with nonhyperbolic and hyperbolic attractors. Eur. Phys. J. Spec. Top. 2017, 226, 1857–1866. [Google Scholar] [CrossRef]
- Yang, C.; Cao, J.; Huang, T.; Zhang, J.; Qiu, J. Guaranteed cost boundary control for cluster synchronization of complex spatio-temporal dynamical networks with community structure. Sci. China Inf. Sci. 2018, 61, 052203. [Google Scholar] [CrossRef] [Green Version]
- Yang, C.; Li, Z.; Chen, X.; Zhang, A.; Qiu, J. Boundary control for exponential synchronization of reaction-diffusion neural networks based on coupled PDE-ODEs. IFAC-PapersOnLine 2020, 53, 3415–3420. [Google Scholar] [CrossRef]
- Tan, X.; Cao, J.; Rutkowski, L. Distributed dynamic self-triggered control for uncertain complex networks with Markov switching topologies and random time-varying delay. IEEE Trans. Netw. Sci. Eng. 2019, 7, 1111–1120. [Google Scholar] [CrossRef]
- Wang, Y.; Tian, Y.; Li, X. Global exponential synchronization of interval neural networks with mixed delays via delayed impulsive control. Neurocomputing 2021, 420, 290–298. [Google Scholar] [CrossRef]
- Yang, S.; Guo, Z.; Wang, J. Global synchronization of multiple recurrent neural networks with time delays via impulsive interactions. IEEE Trans. Neural Netw. Learn. Syst. 2016, 28, 1657–1667. [Google Scholar] [CrossRef] [PubMed]
- Popa, C.A.; Kaslik, E. Finite–time Mittag–Leffler synchronization of neutral–type fractional-order neural networks with leakage delay and time-varying delays. Mathematics 2020, 8, 1146. [Google Scholar] [CrossRef]
- Yao, J.; Wang, H.O.; Guan, Z.H.; Xu, W. Stability and passivity of complex spatio-temporal switching networks with coupling delays. IFAC Proc. 2008, 41, 6638–6641. [Google Scholar] [CrossRef]
- Yao, J.; Wang, H.O.; Guan, Z.H.; Xu, W. Passive stability and synchronization of complex spatio-temporal switching networks with time delays. Automatica 2009, 45, 1721–1728. [Google Scholar] [CrossRef]
- Zhou, D.D.; Guan, Z.H.; Liao, R.Q.; Chi, M.; Xiao, J.W.; Jiang, X.W. Topology identification of a class of complex spatio-temporal networks with time delay. IET Control Theory Appl. 2017, 11, 611–618. [Google Scholar] [CrossRef]
- Zhou, D.D.; Hu, B.; Guan, Z.H.; Liao, R.Q.; Xiao, J.W. Finite-time topology identification of complex spatio-temporal networks with time delay. Nonlinear Dyn. 2018, 91, 785–795. [Google Scholar] [CrossRef]
- Sheng, Y.; Zeng, Z. Impulsive synchronization of stochastic reaction–diffusion neural networks with mixed time delays. Neural Netw. 2018, 103, 83–93. [Google Scholar] [CrossRef]
- Lu, B.; Jiang, H.; Hu, C.; Abdurahman, A. Synchronization of hybrid coupled reaction–diffusion neural networks with time delays via generalized intermittent control with spacial sampled-data. Neural Netw. 2018, 105, 75–87. [Google Scholar] [CrossRef]
- Yang, C.; Huang, T.; Yi, K.; Zhang, A.; Chen, X.; Li, Z.; Qiu, J.; Alsaadi, F.E. Synchronization for nonlinear complex spatio-temporal networks with multiple time-invariant delays and multiple time-varying delays. Neural Process. Lett. 2019, 50, 1051–1064. [Google Scholar] [CrossRef]
- Zhang, R.; Zeng, D.; Park, J.H.; Lam, H.K.; Xie, X. Fuzzy sampled-data control for synchronization of T–S fuzzy reaction–diffusion neural networks with additive time-varying delays. IEEE Trans. Cybern. 2020, 51, 2384–2397. [Google Scholar] [CrossRef]
- Thieme, H.R.; Zhao, X.Q. Asymptotic speeds of spread and traveling waves for integral equations and delayed reaction–diffusion models. J. Differ. Equ. 2003, 195, 430–470. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.; Yu, J.; Xu, M.; Fan, W. Convertible bond pricing with partial integro-differential equation model. Math. Comput. Simul. 2018, 152, 35–50. [Google Scholar] [CrossRef]
- Volpert, V.; Petrovskii, S. Reaction–diffusion waves in biology. Phys. Life Rev. 2009, 6, 267–310. [Google Scholar] [CrossRef] [PubMed]
- Halatek, J.; Frey, E. Rethinking pattern formation in reaction–diffusion systems. Nat. Phys. 2018, 14, 507–514. [Google Scholar] [CrossRef]
- Ebenbeck, M.; Knopf, P. Optimal control theory and advanced optimality conditions for a diffuse interface model of tumor growth. ESAIM Control Optim. Calc. Var. 2020, 26, 71. [Google Scholar] [CrossRef]
- Deutscher, J.; Kerschbaum, S. Backstepping control of coupled linear parabolic PIDEs with spatially varying coefficients. IEEE Trans. Autom. Control 2018, 63, 4218–4233. [Google Scholar] [CrossRef] [Green Version]
- Deutscher, J.; Kerschbaum, S. Robust output regulation by state feedback control for coupled linear parabolic PIDEs. IEEE Trans. Autom. Control 2019, 65, 2207–2214. [Google Scholar] [CrossRef]
- Liu, W.W.; Wang, J.M.; Guo, W. A backstepping approach to adaptive error feedback regulator design for one-dimensional linear parabolic PIDEs. J. Math. Anal. Appl. 2021, 503, 125310. [Google Scholar] [CrossRef]
- Seuret, A.; Gouaisbaut, F. Jensen’s and Wirtinger’s inequalities for time-delay systems. IFAC Proc. 2013, 45, 343–348. [Google Scholar] [CrossRef] [Green Version]
- Yang, C.; Zhang, A.; Zhang, X.; Liu, Z.; Pang, G.; Qiu, J.; Wen, Y.; Shanshui, S.; Cao, J. SPID control for synchronization of complex PIDE networks with time delays. In Proceedings of the IECON 2017-43rd Annual Conference of the IEEE Industrial Electronics Society, Beijing, China, 29 October–1 November 2017; pp. 5997–6001. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dai, J.; Yang, C. Synchronization of Nonlinear Complex Spatiotemporal Networks Based on PIDEs with Multiple Time Delays: A P-sD Method. Mathematics 2022, 10, 509. https://doi.org/10.3390/math10030509
Dai J, Yang C. Synchronization of Nonlinear Complex Spatiotemporal Networks Based on PIDEs with Multiple Time Delays: A P-sD Method. Mathematics. 2022; 10(3):509. https://doi.org/10.3390/math10030509
Chicago/Turabian StyleDai, Jiashu, and Chengdong Yang. 2022. "Synchronization of Nonlinear Complex Spatiotemporal Networks Based on PIDEs with Multiple Time Delays: A P-sD Method" Mathematics 10, no. 3: 509. https://doi.org/10.3390/math10030509
APA StyleDai, J., & Yang, C. (2022). Synchronization of Nonlinear Complex Spatiotemporal Networks Based on PIDEs with Multiple Time Delays: A P-sD Method. Mathematics, 10(3), 509. https://doi.org/10.3390/math10030509