New Sharp Double Inequality of Becker–Stark Type
Abstract
:1. Introduction
2. Lemmas
3. Proof of Theorem 1
4. Remarks
5. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Becker, M.; Stark, E.L. On a hierarchy of quolynomial inequalities for tan x. Publ. Elektrotehničkog Fak. Ser. Mat. i Fiz. 1978, 602–633, 133–138. [Google Scholar]
- Kuang, J.-C. Applied Inequalities, 5th ed.; Shangdong Science and Technology Press: Jinan, China, 2021. [Google Scholar]
- Zhu, L.; Hua, J.-K. Sharpening the Becker-Stark inequalities. J. Inequal. Appl. 2010, 2010, 931275. [Google Scholar] [CrossRef] [Green Version]
- Zhu, L. A refinement of the Becker-Stark inequalities. Math. Notes 2013, 93, 421–425. [Google Scholar] [CrossRef]
- Chen, C.-P.; Cheung, W.-S. Sharp Cusa and Becker-Stark inequalities. J. Inequal. Appl. 2011, 2011, 136. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.T.; Bercu, G. New refinements of Becker-Stark and Cusa-Huygens inequalities via trigonometric polynomials method. Rev. Real Acad. Cienc. Exactas Físicas Nat. Ser. A Mat. 2021, 115, 87. [Google Scholar] [CrossRef]
- Nenezić, M.; Zhu, L. Some improvements of Jordan-Stečkin and Becker-Stark Inequalities. Appl. Anal. Discrete Math. 2018, 12, 244–256. [Google Scholar] [CrossRef] [Green Version]
- Zhu, L. Sharp Becker-Stark-Type inequalities for Bessel functions. J. Inequal. Appl. 2010, 2010, 838740. [Google Scholar] [CrossRef] [Green Version]
- Nishizawa, Y. Sharp Becker-Stark-type inequalities with power exponential functions. J. Inequal. Appl. 2015, 2015, 402. [Google Scholar] [CrossRef] [Green Version]
- Chouikha, A.R. New sharp inequalities related to classical trigonometric inequalities. J. Inequal. Spec. Func. 2020, 11, 27–35. [Google Scholar]
- Banjac, B.; Makragić, M.; Maleševixcx, B. Some notes on a method for proving inequalities by computer. Results Math. 2016, 69, 161–176. [Google Scholar] [CrossRef] [Green Version]
- Bagul, Y.J.; Chesneau, C. New sharp bounds for tangent function. Bull. Alla. Math. Soc. 2020, 34, 277–282. [Google Scholar]
- Jeffrey, A. Handbook of Mathematical Formulas and Integrals, 3rd ed.; Elsevier: San Diego, CA, USA, 2004. [Google Scholar]
- Qi, F. A double inequality for the ratio of two non-zero neighbouring Bernoulli numbers. J. Comput. Appl. Math. 2019, 351, 1–5. [Google Scholar] [CrossRef]
- Zhu, L. New bounds for the ratio of two adjacent even-indexed Bernoulli numbers. Rev. Real Acad. Cienc. Exactas Físicas y Nat. Ser. A Mat. 2020, 114, 83. [Google Scholar] [CrossRef]
- Zhu, L. Monotonicities of some functions involving multiple logarithm function and their applications. Rev. Real Acad. Cienc. Exactas FíSicas Nat. Ser. A Mat. 2020, 114, 139. [Google Scholar] [CrossRef]
- Yang, Z.H.; Tian, J.F. Sharp bounds for the ratio of two zeta functions. J. Comput. Appl. Math. 2020, 364, 112359. [Google Scholar] [CrossRef]
- Biernacki, M.; Krzyz, J. On the monotonicity of certain functionals in the theory of analytic functions. Can. Math. Bull. 1955, 2, 134–145. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, L. New Sharp Double Inequality of Becker–Stark Type. Mathematics 2022, 10, 558. https://doi.org/10.3390/math10040558
Zhu L. New Sharp Double Inequality of Becker–Stark Type. Mathematics. 2022; 10(4):558. https://doi.org/10.3390/math10040558
Chicago/Turabian StyleZhu, Ling. 2022. "New Sharp Double Inequality of Becker–Stark Type" Mathematics 10, no. 4: 558. https://doi.org/10.3390/math10040558
APA StyleZhu, L. (2022). New Sharp Double Inequality of Becker–Stark Type. Mathematics, 10(4), 558. https://doi.org/10.3390/math10040558