Some New Versions of Integral Inequalities for Left and Right Preinvex Functions in the Interval-Valued Settings
Abstract
:1. Introduction
2. Preliminaries
- -
- ifisleft and rightpreinvex IV-F, then,is alsoleft and rightpreinvex for.
- -
- ifandboth are left and right preinvex IV-Fs, then,is also left and right preinvex IV-Fs.
3. Main Results
4. Conclusions and Prospective Results
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hanson, M.A. On sufficiency of the Kuhn-Tucker conditions. J. Math. Anal. Appl. 1981, 80, 545–550. [Google Scholar] [CrossRef] [Green Version]
- Weir, T.; Mond, B. Preinvex functions in multiple objective optimization. J. Math. Anal. Appl. 1988, 136, 29–38. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Feckan, M. Fractional Hermite-Hadamard Inequalities; De Gruyter: Berlin, Germany, 2018; p. 5. [Google Scholar]
- İşcan, I. Hermite-Hadamard’s inequalities for preinvex functions via fractional integrals and related fractional inequalities. arXiv 2012, arXiv:1204.0272. [Google Scholar]
- Macías-Díaz, J.E.; Khan, M.B.; Noor, M.A.; Abd Allah, A.M.; Alghamdi, S.M. Hermite-Hadamard inequalities for generalized convex functions in interval-valued calculus. AIMS Math 2022, 7, 4266–4292. [Google Scholar] [CrossRef]
- Khan, M.B.; Zaini, H.G.; Treanțǎ, S.; Soliman, M.S.; Nonlaopon, K. Riemann–Liouville Fractional Integral Inequalities for Generalized Pre-Invex Functions of Interval-Valued Settings Based upon Pseudo Order Relation. Mathematics 2022, 10, 204. [Google Scholar] [CrossRef]
- Mohan, S.R.; Neogy, S.K. On invex sets and preinvex functions. J. Math. Anal. Appl. 1995, 189, 901–908. [Google Scholar] [CrossRef] [Green Version]
- Sharma, N.; Mishra, S.K.; Hamdi, A. A weighted version of Hermite-Hadamard type inequalities for strongly GA-convex functions. Int. J. Adv. Appl. Sci. 2020, 7, 113–118. [Google Scholar]
- Moore, R.E. Methods and Applications of Interval Analysis; SIAM: Philadelphia, PA, USA, 1979. [Google Scholar]
- Hilger, S. Ein Maßkettenkalkül mit Anwendung auf Zentrumsmannigfaltigkeiten. Ph.D. Thesis, Universitßt Würzburg, Würzburg, Germany, 1988. [Google Scholar]
- Agarwal, R.; O’Regan, D.; Saker, S. Dynamic Inequalities on Time Scales; Springer: Berlin/Heidelberg, Germany, 2014. [Google Scholar]
- Srivastava, H.M.; Tseng, K.-L.; Tseng, S.-J.; Lo, J.-C. Some weighted Opial type inequalities on time scales. Taiwan. J. Math. 2010, 14, 107–122. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Tseng, K.-L.; Tseng, S.-J.; Lo, J.-C. Some generalization of Maroni’s inequality on time scales. Math. Inequal. Appl. 2011, 14, 469–480. [Google Scholar] [CrossRef]
- Wei, W.; Srivastava, H.M.; Zhang, Y.; Wang, L.; Shan, P.; Zhang, T. A local fractional integral inequality on fractal space analogous to Anderson’s inequality. Abstr. Appl. Anal. 2014, 2014, 5218–5229. [Google Scholar] [CrossRef] [Green Version]
- Tunç, T.; Sarikaya, M.Z.; Srivastava, H.M. Some generalized Steffensen’s inequalities via a new identity for local fractional integrals. Int. J. Anal. Appl. 2017, 13, 98–107. [Google Scholar]
- Srivastava, H.M.; Zhang, Z.-H.; Wu, Y.-D. Some further refinements and extensions of the Hermite-Hadamard and Jensen inequalities in several variables. Math. Comput. Model. 2011, 54, 2709–2717. [Google Scholar] [CrossRef]
- Bhurjee, A.K.; Panda, G. Efficient solution of interval optimization problem. Math. Methods Oper. Res. 2012, 76, 273–288. [Google Scholar] [CrossRef]
- Lupulescu, V. Hukuhara differentiability of interval-valued functions and interval differential equations on time scales. Inf. Sci. 2013, 248, 50–67. [Google Scholar] [CrossRef]
- Chalco-Cano, Y.; Lodwick, W.A.; Condori-Equice, W. Ostrowski type inequalities and applications in numerical integration for interval-valued functions. Soft Comput. 2015, 19, 3293–3300. [Google Scholar] [CrossRef]
- Roy, P.; Panda, G. Expansion of generalized Hukuhara differentiable interval-valued function. New Math. Nat. Comput. 2019, 15, 553–570. [Google Scholar] [CrossRef] [Green Version]
- Bhurjee, A.K.; Panda, G. Multi-objective interval fractional programming problems: An approach for obtaining efficient solutions. Opsearch 2015, 52, 156–167. [Google Scholar] [CrossRef]
- Bhurjee, A.K.; Panda, G. Sufficient optimality conditions and duality theory for interval optimization problem. Ann. Oper. Res. 2016, 243, 335–348. [Google Scholar] [CrossRef]
- Khan, M.B.; Noor, M.A.; Abdeljawad, T.; Mousa, A.A.A.; Abdalla, B.; Alghamdi, S.M. LR-Preinvex Interval-Valued Functions and Riemann–Liouville Fractional Integral Inequalities. Fractal Fract. 2021, 5, 243. [Google Scholar] [CrossRef]
- Khan, M.B.; Noor, M.A.; Al-Bayatti, H.M.; Noor, K.I. Some New Inequalities for LR-Log-h-Convex Interval-Valued Functions by Means of Pseudo Order Relation. Appl. Math. 2021, 15, 459–470. [Google Scholar]
- Lupulescu, V. Fractional calculus for interval-valued functions. Fuzzy Sets Syst. 2015, 265, 63–85. [Google Scholar] [CrossRef]
- An, Y.; Ye, G.; Zhao, D.; Liu, W. Hermite-Hadamard type inequalities for interval -convex functions. Mathematics 2019, 7, 436. [Google Scholar] [CrossRef] [Green Version]
- Zhao, D.F.; An, T.Q.; Ye, G.J.; Torres, D.F.M. On Hermite-Hadamard type inequalities for harmonical h-convex interval-valued functions. Math. Inequal. Appl. 2020, 23, 95–105. [Google Scholar]
- Budak, H.; Tunç, T.; Sarikaya, M.Z. Fractional Hermite-Hadamard-type inequalities for interval-valued functions. Proc. Am. Math. Soc. 2019, 148, 705–718. [Google Scholar] [CrossRef] [Green Version]
- Khan, M.B.; Noor, M.A.; Noor, K.I.; Nisar, K.; Ismail, K.I.; Elfasakhany, A. Some Inequalities for LR- h1, h2-Convex interval-valued functions by means of pseudo order relation. Int. J. Comput. Intell. Syst. 2021, 14, 1–15. [Google Scholar] [CrossRef]
- Noor, M.A. Hermite–Hadamard integral inequalities for log-preinvex functions. J. Math. Anal. Approx. Theory 2007, 5, 126–131. [Google Scholar]
- Hadamard, J. Étude sur les propriétés des fonctions entières et en particulier d’une fonction considérée par Riemann. J. Mathématiques Pures Appliquées 1893, 5, 171–215. [Google Scholar]
- Hermite, C. Sur deux limites d’une intégrale définie. Mathesis 1883, 3, 1–82. [Google Scholar]
- Pachpatte, B.G. On some inequalities for convex functions. RGMIA Res. Rep. Coll. 2003, 6, 1–9. [Google Scholar]
- Noor, M.A. Fuzzy preinvex functions. Fuzzy Sets Syst. 1994, 4, 95–104. [Google Scholar] [CrossRef]
- Noor, M.A.; Noor, K.I. On strongly generalized preinvex functions. J. Inequ. Pure Appl. Math. 2005, 6, 102. [Google Scholar]
- Zhang, D.; Guo, C.; Chen, D.; Wang, G. Jensen’s inequalities for set-valued and fuzzy set-valued functions. Fuzzy Sets Syst. 2020, 2020, 1–27. [Google Scholar] [CrossRef]
- Khan, M.B.; Noor, M.A.; Noor, K.I.; Chu, Y.M. New Hermite-Hadamard type inequalities for -convex fuzzy-interval-valued functions. Adv. Differ. Equ. 2021, 2021, 6–20. [Google Scholar] [CrossRef]
- Khan, M.B.; Mohammed, P.O.; Noor, M.A.; Baleanu, D.; Guirao, J. Some New Fractional Estimates of Inequalities for LR-p-Convex Interval-Valued Functions by Means of Pseudo Order Relation. Axioms 2021, 10, 175. [Google Scholar] [CrossRef]
- Khan, M.B.; Treanțǎ, S.; Budak, H. Generalized p-Convex Fuzzy-Interval-Valued Functions and Inequalities Based upon the Fuzzy-Order Relation. Fractal Fract. 2022, 6, 63. [Google Scholar] [CrossRef]
- Khan, M.B.; Srivastava, H.M.; Mohammed, P.O.; Macías-Díaz, J.E.; Hamed, Y.S. Some new versions of integral inequalities for log-preinvex fuzzy-interval-valued functions through fuzzy order relation. Alex. Eng. J. 2022, 61, 7089–7101. [Google Scholar] [CrossRef]
- Khan, M.B.; Srivastava, H.M.; Mohammed, P.O.; Guirao, J.L.; Jawa, T.M. Fuzzy-interval inequalities for generalized preinvex fuzzy interval valued functions. Math. Biosci. Eng. 2022, 19, 812–835. [Google Scholar] [CrossRef]
- Khan, M.B.; Mohammed, P.O.; Noor, M.A.; Hamed, Y.S. New Hermite-Hadamard inequalities in fuzzy-interval fractional calculus and related inequalities. Symmetry 2021, 13, 673. [Google Scholar] [CrossRef]
- Khan, M.B.; Mohammed, P.O.; Noor, M.A.; Alsharif, A.M.; Noor, K.I. New fuzzy-interval inequalities in fuzzy-interval fractional calculus by means of fuzzy order relation. AIMS Math 2021, 6, 10964–10988. [Google Scholar] [CrossRef]
- Khan, M.B.; Noor, M.A.; Mohammed, P.O.; Guirao, J.L.; Noor, K.I. Some Integral Inequalities for Generalized Convex Fuzzy-Interval-Valued Functions via Fuzzy Riemann Integrals. Int. J. Comput. Intell. Syst. 2021, 14, 1–15. [Google Scholar] [CrossRef]
- Khan, M.B.; Noor, M.A.; Al-Shomrani, M.M.; Abdullah, L. Some novel inequalities for LR-h-convex interval-valued functions by means of pseudo-order relation. Math. Methods Appl. Sci. 2022, 45, 1310–1340. [Google Scholar] [CrossRef]
- Khan, M.B.; Noor, M.A.; Abdullah, L.; Chu, Y.M. Some New Classes of Preinvex Fuzzy-Interval-Valued Functions and Inequalities. Int. J. Comput. Intell. Syst. 2021, 14, 1403–1418. [Google Scholar] [CrossRef]
- Liu, P.; Khan, M.B.; Noor, M.A.; Noor, K.I. New Hermite-Hadamard and Jensen inequalities for log-s-convex fuzzy-interval-valued functions in the second sense. Complex Intell. Syst. 2021, 2021, 1–15. [Google Scholar] [CrossRef]
- Sana, G.; Khan, M.B.; Noor, M.A.; Mohammed, P.O.; Chu, Y.M. Harmonically convex fuzzy-interval-valued functions and fuzzy-interval Riemann–Liouville fractional integral inequalities. Int. J. Comput. Intell. Syst. 2021, 14, 1809–1822. [Google Scholar] [CrossRef]
- Khan, M.B.; Mohammed, P.O.; Noor, M.A.; Abualnaja, K.M. Fuzzy integral inequalities on coordinates of convex fuzzy interval-valued functions. Math. Biosci. Eng. 2021, 18, 6552–6580. [Google Scholar] [CrossRef]
- Khan, M.B.; Treanțǎ, S.; Soliman, M.S.; Nonlaopon, K.; Zaini, H.G. Some Hadamard–Fejér Type Inequalities for LR-Convex Interval-Valued Functions. Fractal Fract. 2022, 6, 6. [Google Scholar] [CrossRef]
- Khan, M.B.; Srivastava, H.M.; Mohammed, P.O.; Nonlaopon, K.; Hamed, Y.S. Some new Jensen, Schur and Hermite-Hadamard inequalities for log convex fuzzy interval-valued functions. AIMS Math 2022, 7, 4338–4358. [Google Scholar] [CrossRef]
- Khan, M.B.; Mohammed, P.O.; Machado, J.A.T.; Guirao, J.L. Integral Inequalities for Generalized Harmonically Convex Functions in Fuzzy-Interval-Valued Settings. Symmetry 2021, 13, 2352. [Google Scholar] [CrossRef]
- Khan, M.B.; Srivastava, H.M.; Mohammed, P.O.; Baleanu, D.; Jawa, T.M. Fuzzy-interval inequalities for generalized convex fuzzy-interval-valued functions via fuzzy Riemann integrals. AIMS Math 2022, 7, 1507–1535. [Google Scholar] [CrossRef]
- Fernandez, A.; Mohammed, P. Hermite-Hadamard inequalities in fractional calculus defined using Mittag-Leffler kernels. Math. Meth. Appl. Sci. 2020, 2020, 1–18. [Google Scholar] [CrossRef]
- Mohammed, P.O.; Abdeljawad, T. Integral inequalities for a fractional operator of a function with respect to another function with nonsingular kernel. Adv. Differ. Equ. 2020, 2020, 363. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, M.B.; Treanțǎ, S.; Soliman, M.S.; Nonlaopon, K.; Zaini, H.G. Some New Versions of Integral Inequalities for Left and Right Preinvex Functions in the Interval-Valued Settings. Mathematics 2022, 10, 611. https://doi.org/10.3390/math10040611
Khan MB, Treanțǎ S, Soliman MS, Nonlaopon K, Zaini HG. Some New Versions of Integral Inequalities for Left and Right Preinvex Functions in the Interval-Valued Settings. Mathematics. 2022; 10(4):611. https://doi.org/10.3390/math10040611
Chicago/Turabian StyleKhan, Muhammad Bilal, Savin Treanțǎ, Mohamed S. Soliman, Kamsing Nonlaopon, and Hatim Ghazi Zaini. 2022. "Some New Versions of Integral Inequalities for Left and Right Preinvex Functions in the Interval-Valued Settings" Mathematics 10, no. 4: 611. https://doi.org/10.3390/math10040611
APA StyleKhan, M. B., Treanțǎ, S., Soliman, M. S., Nonlaopon, K., & Zaini, H. G. (2022). Some New Versions of Integral Inequalities for Left and Right Preinvex Functions in the Interval-Valued Settings. Mathematics, 10(4), 611. https://doi.org/10.3390/math10040611