Next Article in Journal
An Investigation on Spiking Neural Networks Based on the Izhikevich Neuronal Model: Spiking Processing and Hardware Approach
Next Article in Special Issue
Guided Hybrid Modified Simulated Annealing Algorithm for Solving Constrained Global Optimization Problems
Previous Article in Journal
PFVAE: A Planar Flow-Based Variational Auto-Encoder Prediction Model for Time Series Data
Previous Article in Special Issue
Hermite-Hadamard-Type Fractional Inclusions for Interval-Valued Preinvex Functions
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Some New Versions of Integral Inequalities for Left and Right Preinvex Functions in the Interval-Valued Settings

by
Muhammad Bilal Khan
1,
Savin Treanțǎ
2,
Mohamed S. Soliman
3,
Kamsing Nonlaopon
4,* and
Hatim Ghazi Zaini
5
1
Department of Mathematics, COMSATS University Islamabad, Islamabad 44000, Pakistan
2
Department of Applied Mathematics, University Politehnica of Bucharest, 060042 Bucharest, Romania
3
Department of Electrical Engineering, College of Engineering, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
4
Department of Mathematics, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
5
Department of Computer Science, College of Computers and Information Technology, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
*
Author to whom correspondence should be addressed.
Mathematics 2022, 10(4), 611; https://doi.org/10.3390/math10040611
Submission received: 13 December 2021 / Revised: 11 February 2022 / Accepted: 15 February 2022 / Published: 16 February 2022
(This article belongs to the Special Issue Variational Problems and Applications)

Abstract

:
The principles of convexity and symmetry are inextricably linked. Because of the considerable association that has emerged between the two in recent years, we may apply what we learn from one to the other. In this paper, our aim is to establish the relation between integral inequalities and interval-valued functions (IV-Fs) based upon the pseudo-order relation. Firstly, we discuss the properties of left and right preinvex interval-valued functions (left and right preinvex IV-Fs). Then, we obtain Hermite–Hadamard (𝓗-𝓗) and Hermite–Hadamard–Fejér (𝓗-𝓗-Fejér) type inequality and some related integral inequalities with the support of left and right preinvex IV-Fs via pseudo-order relation and interval Riemann integral. Moreover, some exceptional special cases are also discussed. Some useful examples are also given to prove the validity of our main results.

1. Introduction

Hanson [1] defined the class of invex functions as one of the most significant extensions of convex functions. Weir and Mond [2], in 1988, used the notion of preinvex functions to demonstrate adequate optimality criteria and duality in nonlinear programming. For a differentiable mapping, the concept of fractional integral identities involving Riemann–Liouville fractional and Hadamard fractional integrals integrals was considered by Wang et al. [3], who identified some inequalities using standard convex, r -convex, m -convex, S -convex, (s, m)-convex, and ( β ,   m ) -convex. Moreover, Işcan [4] also used fractional integrals for preinvex functions to obtain various 𝓗-𝓗 type inequalities. See [5,6,7,8] for other generalizations of the 𝓗-𝓗 inequality.
For accurate solutions to various problems in practical mathematics, Moore [9] used interval arithmetic, IV-Fs, and integrals of IV-Fs to establish arbitrarily sharp upper and lower limits. Moore [9] showed that, if a real-valued mapping Υ ( ϰ ) meets an ordinary Lipschitz condition in Y , | Υ ( ϰ ) Υ ( ω ) | L | ϰ ω | , for ω ,   ϰ Y , then, the united extension is a Lipschitz interval extension in Y . To combine the study of discrete and continuous dynamical systems, Hilger [10] introduced a time scales theory. The widespread use of dynamic equations and integral inequalities on time scales, in domains as diverse as electrical engineering, quantum physics, heat transfer, neural networks, combinatorics, and population dynamics [11], has highlighted the need for this theory. Young’s inequality, Minkoswki’s inequality, Jensen’s inequality, Hölder’s inequality, 𝓗-𝓗 inequality, Steffensen’s inequality, Opial type inequality and Čhebyšhev’s inequality were all explored by Agarwal et al. [11]. Srivastava et al. [12] discovered some generic time scale weighted Opial type inequalities in 2010. Srivastava et al. [13] also proposed several time-based expansions and generalizations of Maroni’s inequality. Under certain proper conditions, some new local fractional integral analogue of Anderson’s inequality on fractal space was introduced by Wei et al. [14], demonstrating that for classical Anderson’s inequality, it was a novel extension on fractal space. Tunç et al. [15] also constructed an identity for local fractional integrals and derived numerous modifications of the well-known Steffensen’s inequality for fractional integrals. The papers [11,16] and the references therein might be consulted for further information. Bhurjee and Panda [17] identified the parametric form of an IV-F and devised a technique to investigate the existence of a generic interval optimization issue solution. Using the notion of the generalized Hukuhara difference, Lupulescu [18] developed differentiability and integrability for IV-Fs on time scales. Cano et al. [19] developed a novel form of the Ostrowski inequality for gH differentiable IV-Fs in 2015 and achieved an extension of the class of real functions that are not always differentiable. For gH-differentiable IV-Fs, Cano et al. [19] found error limitations to quadrature rules. In addition, Roy and Panda [20] developed the idea of the -monotonic property of IV-Fs in the higher dimension and used extended Hukuhara differentiability to obtain various conclusions. We refer to [21,22,23,24,25], and the references therein, for further information on IV-Fs. An et al. [26] and Zhao et al. [27] recently proposed an (h1, h2)-convex IV-F and harmonically h-convex IV-F, respectively. Moreover, they found certain interval 𝓗-𝓗 type inequalities. Budak et al. [28] also created the 𝓗-𝓗 inequality for a convex IV-F and its product. For more information related to generalized convex functions and fractional inequalities in interval-valued settings, see [29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53] and the references therein.
Inspired by the ongoing research, we introduce the concept of left and right preinvex IV-F and establish the 𝓗-𝓗 and 𝓗-𝓗-Fejér inequality for left and right preinvex IV-Fs and the product of two left and right preinvex IV-Fs using Riemann integrals in interval-valued settings, which are motivated by the above studies and ideas. We also provide some examples to support our ideas.

2. Preliminaries

First, we offer some background information on interval-valued functions, the theory of convexity, interval-valued integration, and interval-valued fractional integration, which will be utilized throughout the article.
We offer some fundamental arithmetic regarding interval analysis in this paragraph, which will be quite useful throughout the article.
Z = [ Z ,   Z ] ,   Q = [ Q ,   Q ]   ( Z ϰ   Z   a n d   Q z   Q   ϰ ,   z ) Z + Q = [ Z ,   Z ] + [ Q ,   Q ] = [ Z + Q ,   Z + Q ] , Z Q = [ Z ,   Z ] [ Q ,   Q ] = [ Z Q ,   Z Q ] , min X = min { Z Q ,   Z Q ,   Z Q ,   Z Q } ,   max X = max { Z Q ,   Z Q ,   Z Q ,   Z Q } ν . [ Z ,   Z ] = { [ ν Z ,   ν Z ]   if   ν > 0 ,   { 0 }   if   ν = 0 , [ ν Z , ν Z ]   if   ν < 0 .  
Let K C , K C + , K C be the set of all closed intervals of , the set of all closed positive intervals of and the set of all closed negative intervals of . Then, K C , K C + , and K C are defined as
K C = { [ Z ,   Z ] : Z ,   Z   and   Z   Z } K C + = { [ Z ,   Z ] : Z ,   Z K C   and   Z > 0 } K C = { [ Z ,   Z ] : Z ,   Z K C   and Z < 0 }
For [ Z ,   Z ] ,   [ Q ,   Q ] K C , the inclusion is defined by [ Z ,   Z ] [ Q ,   Q ] , if and only if, Q Z , Z Q .
Remark 1.
[36]The relation p defined on K C by
[ Q ,   Q ] p [ Z ,   Z ]   i f   a n d   o n l y   i f   Q Z ,   Q Z ,  
for all [ Q ,   Q ] ,   [ Z ,   Z ] K C , is a pseudo-order relation.
Theorem 1.
[9] If Υ : [ μ ,   υ ] K C is an IV-F, such that Υ ( ω ) = [ Υ ( ω ) ,   Υ ( ω ) ] , then, Υ is Riemann integrable over [ μ , υ ] if and only if, Υ ( ω ) and Υ ( ω ) are both Riemann integrable over [ μ , υ ] , such that
( I R ) μ υ Υ ( ω ) d ω = [ ( R ) μ υ Υ ( ω ) d ω ,   ( R ) μ υ Υ ( ω ) d ω ]  
where Υ , Υ : [ μ ,   υ ] .
The collection of all Riemann integrable real valued functions and Riemann integrable IV-Fs is denoted by [ μ , υ ] and [ μ , υ ] , respectively.
Definition 1.
A set K n is said to be a convex set, if, for all ω ,   ϰ K ,   t [ 0 ,   1 ] , we have
t ϰ + ( 1 t ) ω K ,   o r   t ω + ( 1 t ) ϰ K .
Definition 2.
[36] Let K be a convex set. Then, IV-F Υ : K K C + is said to be left and right convex on   K if
Υ ( t ω + ( 1 t ) ϰ ) p t Υ ( ω ) + ( 1 t ) Υ ( ϰ ) ,  
for all   ω ,   ϰ K ,   t [ 0 ,   1 ] .   Υ is calledleft and rightconcave on K if Equation (3) is reversed.
Definition 3.
[7] A set A n is said to be an invex set, if, for all ω ,   ϰ A ,   t [ 0 ,   1 ] , we have
ω + ( 1 t ) ζ ( ϰ , ω ) A   o r   ω + t ζ ( ϰ , ω ) A ,
where ζ : n × n n .
Definition 4.
[6] Let A be an invex set. Then, IV-F Υ : A K C + is said to be left and right preinvex on   A with respect to ζ if
Υ ( ω + ( 1 t ) ζ ( ϰ , ω ) ) p t Υ ( ω ) + ( 1 t ) Υ ( ϰ ) ,  
for all   ω ,   ϰ A ,   t [ 0 ,   1 ] , where ζ : n × n n .   Υ is calledleft and rightpreincave on A with respect to ζ if inequality (4) is reversed. Υ is called affine if Υ is both convex and concave.
Remark 2.
The left and right preinvex IV-Fs have some very nice properties similar to left and right convex IV-F:
-
if Υ isleft and rightpreinvex IV-F, then, θ Υ is alsoleft and rightpreinvex for θ 0 .
-
if Υ and D both are left and right preinvex IV-Fs, then, m a x ( Υ ( ω ) , D ( ω ) ) is also left and right preinvex IV-Fs.
In the case of ζ ( ϰ , ω ) = ϰ ω , we obtain (4) from (3).
The following outcome is very important in the field of interval-valued calculus because, by using this result, we can easily handle IV-Fs. Basically, Theorem 2 establishes the relation between IV-F  Υ ( ω ) and lower function Υ ( ω ) and upper function   Υ ( ω ) .
The following assumption will be required to prove the next result regarding the bifunction ζ : n × n n , which is known as:
Condition C.
[7] Let A be an invex set with respect to ζ . For any ϰ , ω A and t [ 0 ,   1 ] ,
ζ ( ω , ω + t ζ ( ϰ , ω ) ) = t ζ ( ϰ , ω ) , ζ ( ϰ , ω + t ζ ( ϰ , ω ) ) = ( 1 t ) ζ ( ϰ , ω ) .
Clearly for t = 0, we have ζ ( ϰ , ω ) = 0 if and only if,   ϰ = ω , for all ϰ , ω A . For the applications of Condition C, see[26,30,34,35].
Theorem 2.
[6] Let A be an invex set and Υ : A K C + be a IV-F such that
Υ ( ω ) = [ Υ ( ω ) ,   Υ ( ω ) ] ,     ω A ,  
for all ω A . Then, Υ is left and right preinvex IV-F on A , if and only if, Υ ( ω ) and Υ ( ω ) both are preinvex functions.
Remark 3.
If Υ ( ω ) = Υ ( ω ) , then, from (4), one can acquire the following inequality, see [2]:
Υ ( ω + ( 1 t ) ζ ( ϰ , ω ) ) t Υ ( ω ) + ( 1 t ) Υ ( ϰ ) ,  
for all   ω ,   ϰ A ,   t [ 0 ,   1 ] , where ζ : n × n n .
If Υ ( ω ) = Υ ( ω ) with ζ ( ϰ , ω ) = ϰ ω , then, from (4), one can acquire the following inequality:
Υ ( t ω + ( 1 t ) ϰ ) t Υ ( ω ) + ( 1 t ) Υ ( ϰ ) ,  
for all   ω ,   ϰ K ,   t [ 0 ,   1 ] .
Example 1.
We consider the IV-F Υ : [ 0 , 1 ] K C + defined by Υ ( ω ) = [ 2 ,   4   ] ω 2 . Since end point functions Υ ( ω ) ,   Υ ( ω ) are preinvex functions with respect to ζ ( ϰ , ω ) = ϰ ω . Hence, Υ ( ω ) is left and right preinvex IV-F.

3. Main Results

In this section, we derive interval 𝓗-𝓗 type inequalities for left and right preinvex functions in interval-valued settings. Moreover, we provide some nontrivial examples to verify the validity of the theory developed in this study.
Theorem 3.
Let Υ : [ υ ,   υ + ζ ( μ ,   υ ) ] K C + be a left and right preinvex IV-F such that Υ ( ω ) = [ Υ ( ω ) ,   Υ ( ω ) ] for all ω [ υ ,   υ + ζ ( μ ,   υ ) ] . If Υ T ( [ υ ,   υ + ζ ( μ ,   υ ) ] ) , then
Υ ( 2 υ + ζ ( μ ,   υ ) 2 ) p 1 ζ ( μ ,   υ )   ( I R ) υ υ + ζ ( μ ,   υ ) Υ ( ω ) d ω p Υ ( υ ) + Υ ( υ + ζ ( μ ,   υ ) ) 2 p Υ ( υ ) + Υ ( μ ) 2  
If Υ is left and right preincave, then, we achieve the following coming inequality:
Υ ( 2 υ + ζ ( μ ,   υ ) 2 ) p 1 ζ ( μ ,   υ )   ( I R ) υ υ + ζ ( μ ,   υ ) Υ ( ω ) d ω p Υ ( υ ) + Υ ( υ + ζ ( μ ,   υ ) ) 2 p Υ ( υ ) + Υ ( μ ) 2
Proof. 
Let Υ : [ υ ,   υ + ζ ( μ ,   υ ) ] K C + be a left and right preinvex IV-F. Then, by hypothesis, we have
2 Υ ( 2 υ + ζ ( μ ,   υ ) 2 ) p Υ ( υ + ( 1 t ) ζ ( μ ,   υ ) ) + Υ ( υ + t ζ ( μ ,   υ ) ) .  
Therefore, we have
2 Υ ( 2 υ + ζ ( μ ,   υ ) 2 ) Υ ( υ + ( 1 t ) ζ ( μ ,   υ ) ) + Υ ( υ + t ζ ( μ ,   υ ) ) , 2 Υ ( 2 υ + ζ ( μ ,   υ ) 2 ) Υ ( υ + ( 1 t ) ζ ( μ ,   υ ) ) + Υ ( υ + t ζ ( μ ,   υ ) ) .
Then
2 0 1 Υ ( 2 υ + ζ ( μ ,   υ ) 2 ) d t 0 1 Υ ( υ + ( 1 t ) ζ ( μ ,   υ ) ) d t + 0 1 Υ ( υ + t ζ ( μ ,   υ ) ) d t , 2 0 1 Υ ( 2 υ + ζ ( μ ,   υ ) 2 ) d t 0 1 Υ ( υ + ( 1 t ) ζ ( μ ,   υ ) ) d t + 0 1 Υ ( υ + t ζ ( μ ,   υ ) ) d t .
It follows that
Υ ( 2 υ + ζ ( μ ,   υ ) 2 ) 1 ζ ( μ ,   υ )   υ υ + ζ ( μ ,   υ ) Υ ( ω ) d ω , Υ ( 2 υ + ζ ( μ ,   υ ) 2 ) 2 ζ ( μ ,   υ )   υ υ + ζ ( μ ,   υ ) Υ ( ω ) d ω .
That is
[ Υ ( 2 υ + ζ ( μ ,   υ ) 2 ) ,   Υ ( 2 υ + ζ ( μ ,   υ ) 2 ) ] p 1 ζ ( μ ,   υ ) [ υ υ + ζ ( μ ,   υ ) Υ ( ω ) d ω ,   υ υ + ζ ( μ ,   υ ) Υ ( ω ) d ω ] .
Thus,
Υ ( 2 υ + ζ ( μ ,   υ ) 2 ) p 1 ζ ( μ ,   υ )   ( I R ) υ υ + ζ ( μ ,   υ ) Υ ( ω ) d ω .
In a similar way to the above, we have
1 ζ ( μ ,   υ )   ( I R ) υ υ + ζ ( μ ,   υ ) Υ ( ω ) d ω p Υ ( υ ) + Υ ( μ ) 2 .
Combining (10) and (11), we have
Υ ( 2 υ + ζ ( μ ,   υ ) 2 ) p 1 ζ ( μ ,   υ )   ( I R ) υ υ + ζ ( μ ,   υ ) Υ ( ω ) d ω p Υ ( υ ) + Υ ( μ ) 2 .
This completes the proof. □
Remark 4.
If ξ ( μ , υ ) = μ υ , then Theorem 3 reduces to the result for left and right convex IV-F, see [29]:
Υ ( υ + μ 2 ) p 1 μ υ   ( I R ) υ μ Υ ( ω ) d ω p Υ ( υ ) + Υ ( μ ) 2 .  
If Υ ( ω ) = Υ ( ω ) , then Theorem 3 reduces to the result for the preinvex function, see[30]:
Υ ( 2 υ + ζ ( μ ,   υ ) 2 ) 1 ζ ( μ ,   υ )   ( R ) υ υ + ζ ( μ ,   υ ) Υ ( ω ) d ω [ Υ ( υ ) + Υ ( μ ) ] 0 1 t d t .
If Υ ( ω ) = Υ ( ω ) with ξ ( μ , υ ) = μ υ , then Theorem 3 reduces to the result for the convex function, see[31,32]:
Υ ( υ + μ 2 ) 1 μ υ   ( R ) υ μ Υ ( ω ) d ω Υ ( υ ) + Υ ( μ ) 2 .
Example 2.
We consider the IV-F Υ : [ υ ,   υ + ζ ( μ ,   υ ) ] = [ 0 ,   ζ ( 2 ,   0 ) ] K C + defined by Υ ( ω ) = [ 2 ω 2 , 4 ω 2 ] . Since end point functions Υ ( ω ) = 2 ω 2 ,   Υ ( ω ) = 4 ω 2 are preinvex functions with respect to ζ ( μ ,   υ ) = μ υ . Hence, Υ ( ω ) is left and right preinvex IV-F with respect to ζ ( μ ,   υ ) = μ υ . We now compute the following
Υ ( 2 υ + ζ ( μ ,   υ ) 2 ) p 1 ζ ( μ ,   υ )   ( I R ) υ υ + ζ ( μ ,   υ ) Υ ( ω ) d ω p Υ ( υ ) + Υ ( μ ) 2 .   Υ ( 2 υ + ζ ( μ ,   υ ) 2 ) = Υ ( 1 ) = 2 ,   1 ζ ( μ ,   υ )   υ υ + ζ ( μ ,   υ ) Υ ( ω ) d ω = 1 2   0 2 2 ω 2 d ω = 8 3 ,   Υ ( υ ) + Υ ( μ ) 2 = 4 ,
that means
2 8 3 4 .
Similarly, it can be easily shown that
Υ ( 2 υ + ζ ( μ ,   υ ) 2 ) 1 ζ ( μ ,   υ )   υ υ + ζ ( μ ,   υ ) Υ ( ω ) d ω Υ ( υ ) + Υ ( μ ) 2
such that
Υ ( 2 υ + ζ ( μ ,   υ ) 2 ) = Υ ( 1 ) = 4 , 1 ζ ( μ ,   υ )   υ υ + ζ ( μ ,   υ ) Υ ( ω ) d ω = 1 2   0 2 4 ω 2 d ω = 16 3 ,   Υ ( υ ) + Υ ( μ ) 2 = 8 .
From which, it follows that
4 16 3 8 ,
that is
[ 2 ,   4 ] p [ 8 3 ,   16 3 ] p [ 4 ,   8 ]
hence,
Υ ( 2 υ + ζ ( μ ,   υ ) 2 ) p 1 ζ ( μ ,   υ )   ( I R ) υ υ + ζ ( μ ,   υ ) Υ ( ω ) d ω p Υ ( υ ) + Υ ( μ ) 2 .
Theorem 4.
Let Υ , D : [ υ ,   υ + ζ ( μ ,   υ ) ] K C + be two left and right preinvex IV-F such that Υ ( ω ) = [ Υ ( ω ) ,   Υ ( ω ) ] and D ( ω ) = [ D ( ω ) ,   D ( ω ) ] for all ω [ υ ,   υ + ζ ( μ ,   υ ) ] . If Υ ,   D and Υ × D T ( [ υ ,   υ + ζ ( μ ,   υ ) ] ) , then
1 ζ ( μ ,   υ )   ( I R ) υ υ + ζ ( μ ,   υ ) Υ ( ω ) × D ( ω ) d ω p A ( υ , μ ) 3 + C ( υ , μ ) 6 ,  
where A ( υ , μ ) = Υ ( υ ) × D ( υ ) + Υ ( μ ) × D ( μ ) ,   C ( υ , μ ) = Υ ( υ ) × D ( μ ) + Υ ( μ ) × D ( υ ) , and A ( υ , μ ) = [ A ( ( υ , μ ) ) ,   A ( ( υ , μ ) ) ] and C ( υ , μ ) = [ C ( ( υ , μ ) ) ,   C ( ( υ , μ ) ) ] .
Proof. 
Since Υ ,   D ( [ υ ,   υ + ζ ( μ ,   υ ) ] ) , then we have
Υ ( υ + ( 1 t ) ζ ( μ ,   υ ) ) t Υ ( υ ) + ( 1 t ) Υ ( μ ) ,   Υ ( υ + ( 1 t ) ζ ( μ ,   υ ) ) t Υ ( υ ) + ( 1 t ) Υ ( μ ) .  
And
D ( υ + ( 1 t ) ζ ( μ ,   υ ) ) t D ( υ ) + ( 1 t ) D ( μ ) ,   D ( υ + ( 1 t ) ζ ( μ ,   υ ) ) t D ( υ ) + ( 1 t ) D ( μ ) .  
From the definition of left and right preinvex IV-F, it follows that 0 p Υ ( ω ) and 0 p D ( ω ) , so
Υ ( υ + ( 1 t ) ζ ( μ ,   υ ) ) × D ( υ + ( 1 t ) ζ ( μ ,   υ ) )   ( t Υ ( υ ) + ( 1 t ) Υ ( μ ) ) ( t D ( υ ) + ( 1 t ) D ( μ ) ) = Υ ( υ ) × D ( υ ) t 2 + Υ ( μ ) × D ( μ ) t 2 + Υ ( υ ) × D ( μ ) t ( 1 t ) + Υ ( μ ) × D ( υ ) t ( 1 t ) , Υ ( υ + ( 1 t ) ζ ( μ ,   υ ) ) × D ( υ + ( 1 t ) ζ ( μ ,   υ ) ) ( t Υ ( υ ) + ( 1 t ) Υ ( μ ) ) ( t D ( υ ) + ( 1 t ) D ( μ ) ) = Υ ( υ ) × D ( υ ) t 2 + Υ ( μ ) × D ( μ ) t 2 + Υ ( υ ) × D ( μ ) t ( 1 t ) + Υ ( μ ) × D ( υ ) t ( 1 t ) ,
Integrating both sides of the above inequality over [0,1], we obtain
0 1 Υ ( υ + ( 1 t ) ζ ( μ ,   υ ) ) D ( υ + ( 1 t ) ζ ( μ ,   υ ) ) = 1 ζ ( μ ,   υ ) υ υ + ζ ( μ ,   υ ) Υ ( ω ) D ( ω ) d ω ( Υ ( υ ) D ( υ ) + Υ ( μ ) D ( μ ) ) 0 1 t 2 d t + ( Υ ( υ ) D ( μ ) + Υ ( μ ) D ( υ ) ) 0 1 t ( 1 t ) d t ,   0 1 Υ ( υ + ( 1 t ) ζ ( μ ,   υ ) ) D ( υ + ( 1 t ) ζ ( μ ,   υ ) ) = 1 ζ ( μ ,   υ )   υ υ + ζ ( μ ,   υ ) Υ ( ω ) D ( ω ) d ω   ( Υ ( υ ) D ( υ ) + Υ ( μ ) D ( μ ) ) 0 1 t 2 d t + ( Υ ( υ ) D ( μ ) + Υ ( μ ) D ( υ ) ) 0       1 t ( 1 t ) d t .
It follows that,
1 ζ ( μ ,   υ ) υ υ + ζ ( μ ,   υ ) Υ ( ω ) D ( ω ) d ω A ( ( υ , μ ) ) 0 1 t 2 d t   + C ( ( υ , μ ) ) 0 1 t ( 1 t ) d t ,   1 ζ ( μ ,   υ )   υ υ + ζ ( μ ,   υ ) Υ ( ω ) D ( ω ) d ω   A ( ( υ , μ ) ) 0 1 t 2 d t   +   C ( ( υ , μ ) ) 0 1 t ( 1 t ) d t ,
that is
1 ζ ( μ ,   υ ) [ υ υ + ζ ( μ ,   υ ) Υ ( ω ) D ( ω ) d ω ,   υ υ + ζ ( μ ,   υ ) Υ ( ω ) D ( ω ) d ω ] p [ A ( ( υ , μ ) ) 3 ,   A ( ( υ , μ ) ) 3 ] + [ C ( ( υ , μ ) ) 6 ,   C ( ( υ , μ ) ) 6 ] .
Thus,
1 ζ ( μ ,   υ )   ( I R ) υ υ + ζ ( μ ,   υ ) Υ ( ω ) D ( ω ) d ω p A ( υ , μ ) 3 + C ( υ , μ ) 6 ,
and the theorem has been established. □
Example 3.
We consider the IV-Fs Υ ,   D : [ υ ,   υ + ζ ( μ ,   υ ) ] = [ 0 ,   ζ ( 1 ,   0 ) ] K C + defined by Υ ( ω ) = [ 2 ω 2 , 4 ω 2 ] and D ( ω ) = [ ω , 2 ω ] . Since end point functions Υ ( ω ) = 2 ω 2 ,   Υ ( ω ) = 4 ω 2 and D ( ω ) = ω , D ( ω ) = 2 ω are preinvex functions with respect to ζ ( μ ,   υ ) = μ υ . Hence Υ ,   D both are left and right preinvex IV-Fs. We now compute the following
1 ζ ( μ ,   υ )   υ υ + ζ ( μ ,   υ ) Υ ( ω ) × D ( ω ) d ω = 1 2 ,   1 ζ ( μ ,   υ )   υ υ + ζ ( μ ,   υ ) Υ ( ω ) × D ( ω ) d ω = 2 ,   A ( ( υ , μ ) ) 3 = 1 3 ,   A ( ( υ , μ ) ) 3 = 8 3 ,   C ( ( υ , μ ) ) 6 = 0 ,   C ( ( υ , μ ) ) 6 = 0 ,  
that means
1 2 2 3 ,   2 8 3 .
Hence, Theorem 4 is verified.
Theorem 5.
Let Υ , D : [ υ ,   υ + ζ ( μ ,   υ ) ] K C + be two left and right preinvex IV-Fs, such that Υ ( ω ) = [ Υ ( ω ) ,   Υ ( ω ) ] and D ( ω ) = [ D ( ω ) ,   D ( ω ) ] for all ω [ υ ,   υ + ζ ( μ ,   υ ) ] . If Υ ,   D and Υ × D T ( [ υ ,   υ + ζ ( μ ,   υ ) ] ) and condition C hold for ζ , then
2   Υ ( 2 υ + ζ ( μ ,   υ ) 2 ) × D ( 2 υ + ζ ( μ ,   υ ) 2 ) p 1 ζ ( μ ,   υ )   ( I R ) υ υ + ζ ( μ ,   υ ) Υ ( ω ) × D ( ω ) d ω + A ( υ , μ ) 6 + C ( υ , μ ) 3 ,  
where   A ( υ , μ ) = Υ ( υ ) × D ( υ ) + Υ ( μ ) × D ( μ ) ,   C ( υ , μ ) = Υ ( υ ) × D ( μ ) + Υ ( μ ) × D ( υ ) , and A ( υ , μ ) = [ A ( ( υ , μ ) ) ,   A ( ( υ , μ ) ) ] and C ( υ , μ ) = [ C ( ( υ , μ ) ) ,   C ( ( υ , μ ) ) ] .
Proof. 
Using condition C, we can write
υ + 1 2 ζ ( μ ,   υ ) = υ + t ζ ( μ ,   υ ) + 1 2 ζ ( υ + ( 1 t ) ζ ( μ , υ ) ,   υ + t ζ ( μ , υ ) ) .
By hypothesis, we have
Υ ( 2 υ + ζ ( μ ,   υ ) 2 ) × D ( 2 υ + ζ ( μ ,   υ ) 2 ) Υ ( 2 υ + ζ ( μ ,   υ ) 2 ) × D ( 2 υ + ζ ( μ ,   υ ) 2 ) = Υ ( υ + t ζ ( μ ,   υ ) + 1 2 ζ ( υ + ( 1 t ) ζ ( μ , υ ) ,   υ + t ζ ( μ , υ ) ) ) × D ( υ + t ζ ( μ ,   υ ) + 1 2 ζ ( υ + ( 1 t ) ζ ( μ , υ ) ,   υ + t ζ ( μ , υ ) ) )   = Υ ( υ + t ζ ( μ ,   υ ) + 1 2 ζ ( υ + ( 1 t ) ζ ( μ , υ ) ,   υ + t ζ ( μ , υ ) ) ) × D ( υ + t ζ ( μ ,   υ ) + 1 2 ζ ( υ + ( 1 t ) ζ ( μ , υ ) ,   υ + t ζ ( μ , υ ) ) ) 1 4 [ Υ ( υ + ( 1 t ) ζ ( μ ,   υ ) ) × D ( υ + ( 1 t ) ζ ( μ ,   υ ) ) + Υ ( υ + ( 1 t ) ζ ( μ ,   υ ) ) × D ( υ + t ζ ( μ ,   υ ) ) ] +   1 4 [ Υ ( υ + t ζ ( μ ,   υ ) ) × D ( υ + ( 1 t ) ζ ( μ ,   υ ) ) + Υ ( υ + t ζ ( μ ,   υ ) ) × D ( υ + t ζ ( μ ,   υ ) ) ] , 1 4 [ Υ ( υ + ( 1 t ) ζ ( μ ,   υ ) ) × D ( υ + ( 1 t ) ζ ( μ ,   υ ) ) + Υ ( υ + ( 1 t ) ζ ( μ ,   υ ) ) × D ( υ + t ζ ( μ ,   υ ) ) ] +   1 4 [ Υ ( υ + t ζ ( μ ,   υ ) ) × D ( υ + ( 1 t ) ζ ( μ ,   υ ) ) + Υ ( υ + t ζ ( μ ,   υ ) ) × D ( υ + t ζ ( μ ,   υ ) ) ] , 1 4 [ Υ ( υ + ( 1 t ) ζ ( μ ,   υ ) ) × D ( υ + ( 1 t ) ζ ( μ ,   υ ) ) + Υ ( υ + t ζ ( μ ,   υ ) ) × D ( υ + t ζ ( μ ,   υ ) ) ] +   1 4 [ ( t Υ ( υ ) + ( 1 t ) Υ ( μ ) ) × ( ( 1 t ) D ( υ ) + t D ( μ ) ) + ( ( 1 t ) Υ ( υ ) + t Υ ( μ ) ) × ( t D ( υ ) + ( 1 t ) D ( μ ) ) ] , 1 4 [ Υ ( υ + ( 1 t ) ζ ( μ ,   υ ) ) × D ( υ + ( 1 t ) ζ ( μ ,   υ ) ) + Υ ( υ + t ζ ( μ ,   υ ) ) × D ( υ + t ζ ( μ ,   υ ) ) ] +   1 4 [ ( t Υ ( υ ) + ( 1 t ) Υ ( μ ) ) × ( ( 1 t ) D ( υ ) + t D ( μ ) ) + ( ( 1 t ) Υ ( υ ) + t Υ ( μ ) ) × ( t D ( υ ) + ( 1 t ) D ( μ ) ) ] , = 1 4 [ Υ ( υ + ( 1 t ) ζ ( μ ,   υ ) ) × D ( υ + ( 1 t ) ζ ( μ ,   υ ) ) + Υ ( υ + t ζ ( μ ,   υ ) ) × D ( υ + t ζ ( μ ,   υ ) ) ] + 1 2 [ { t 2 + ( 1 t ) 2 } C ( ( υ , μ ) ) + { t ( 1 t ) + ( 1 t ) t } A ( ( υ , μ ) ) ] , = 1 4 [ Υ ( υ + ( 1 t ) ζ ( μ ,   υ ) ) × D ( υ + ( 1 t ) ζ ( μ ,   υ ) ) + Υ ( υ + t ζ ( μ ,   υ ) ) × D ( υ + t ζ ( μ ,   υ ) ) ] + 1 2 [ { t 2 + ( 1 t ) 2 } C ( ( υ , μ ) ) + { t ( 1 t ) + ( 1 t ) t } A ( ( υ , μ ) ) ] .
Integrating over [ 0 ,   1 ] , we have
2   Υ ( 2 υ + ζ ( μ ,   υ ) 2 ) × D ( 2 υ + ζ ( μ ,   υ ) 2 ) 1 ζ ( μ ,   υ )   υ υ + ζ ( μ ,   υ ) Υ ( ω ) × D ( ω ) d ω   +   A ( ( υ , μ ) ) 6   + C ( ( υ , μ ) ) 3 , 2   Υ ( 2 υ + ζ ( μ ,   υ ) 2 ) × D ( 2 υ + ζ ( μ ,   υ ) 2 ) 1 ζ ( μ ,   υ )   υ υ + ζ ( μ ,   υ ) Υ ( ω ) × D ( ω ) d ω   +   A ( ( υ , μ ) ) 6   + C ( ( υ , μ ) ) 3 ,
from which, we have
2 [ Υ ( 2 υ + ζ ( μ ,   υ ) 2 ) × D ( 2 υ + ζ ( μ ,   υ ) 2 ) ,   Υ ( 2 υ + ζ ( μ ,   υ ) 2 ) × D ( 2 υ + ζ ( μ ,   υ ) 2 ) ] p 1 ζ ( μ ,   υ ) [ υ υ + ζ ( μ ,   υ ) Υ ( ω ) × D ( ω ) d ω   ,   υ υ + ζ ( μ ,   υ ) Υ ( ω ) × D ( ω ) d ω   ] + [ A ( ( υ , μ ) ) 6 ,   A ( ( υ , μ ) ) 6 ] + [ C ( ( υ , μ ) ) 3 ,   C ( ( υ , μ ) ) 3 ] ,
that is
2   Υ ( 2 υ + ζ ( μ ,   υ ) 2 ) × D ( 2 υ + ζ ( μ ,   υ ) 2 ) p 1 ζ ( μ ,   υ )   ( I R ) υ υ + ζ ( μ ,   υ ) Υ ( ω ) × D ( ω ) d ω + A ( υ , μ ) 6 + C ( υ , μ ) 3 .
This completes the proof. □
Example 4.
We consider the IV-Fs Υ ,   D : [ υ ,   υ + ζ ( μ ,   υ ) ] = [ 0 ,   ζ ( 1 ,   0 ) ] K C + defined by, Υ ( ω ) = [ 2 ω 2 , 4 ω 2 ] and D ( ω ) = [ 1 , 2 ] ω , and these functions fulfill all the assumptions of Theorem 5. Since Υ ( ω ) ,   D ( ω ) both are left and right preinvex IV-Fs with respect to ζ ( μ ,   υ ) = μ υ , we have Υ ( ω ) = 2 ω 2 ,   Υ ( ω ) = 4 ω 2 and D ( ω ) = ω , D ( ω ) = 2 ω . We now compute the following
2   Υ ( 2 υ + ζ ( μ ,   υ ) 2 ) × D ( 2 υ + ζ ( μ ,   υ ) 2 ) = 1 2 ,   2   Υ ( 2 υ + ζ ( μ ,   υ ) 2 ) × D ( 2 υ + ζ ( μ ,   υ ) 2 ) = 2 , 1 ζ ( μ ,   υ )   υ υ + ζ ( μ ,   υ ) Υ ( ω ) × D ( ω ) d ω = 1 2 ,   1 ζ ( μ ,   υ )   υ υ + ζ ( μ ,   υ ) Υ ( ω ) × D ( ω ) d ω = 2 , A ( ( υ , μ ) ) 6 = 1 3 ,   A ( ( υ , μ ) ) 6 = 4 3 , C ( ( υ , μ ) ) 3 = 0 ,   C ( ( υ , μ ) ) 3 = 0 ,
that means
1 2 1 2 + 0 + 1 3 = 5 6 ,   2 2 + 0 + 4 3 = 10 3 .
Hence, Theorem 5 is verified.
It is well known that classical 𝓗-𝓗-Fejér inequality is a generalization of classical 𝓗-𝓗 inequality. Now we derive 𝓗-𝓗-Fejér inequality for left and right preinvex IV-Fs and then we will obtain the validity of this inequality with the help of a non-trivial example. Firstly, we obtain the second 𝓗-𝓗-Fejér inequality for left and right preinvex IV-F.
Theorem 6.
Let Υ : [ υ ,   υ + ζ ( μ ,   υ ) ] K C + be a left and right preinvex IV-F with υ < υ + ζ ( μ ,   υ ) such that Υ ( ω ) = [ Υ ( ω ) ,   Υ ( ω ) ] for all ω [ υ ,   υ + ζ ( μ ,   υ ) ] . If Υ T ( [ υ ,   υ + ζ ( μ ,   υ ) ] ) and S : [ υ ,   υ + ζ ( μ ,   υ ) ] ,   S ( ω ) 0 , symmetric with respect to υ + 1 2 ζ ( μ ,   υ ) , then
1 ζ ( μ ,   υ )   ( I R ) υ υ + ζ ( μ ,   υ ) Υ ( ω ) S ( ω ) d ω p [ Υ ( υ ) + Υ ( μ ) ] 0 1 t S ( υ + t ζ ( μ ,   υ ) ) d t .  
Proof. 
Let Υ be a left and right preinvex IV-F. Then, we have
Υ ( υ + ( 1 t ) ζ ( μ , υ ) ) S ( υ + ( 1 t ) ζ ( μ , υ ) )     ( t Υ ( υ ) + ( 1 t ) Υ ( μ ) ) S ( υ + ( 1 t ) ζ ( μ , υ ) ) , Υ ( υ + ( 1 t ) ζ ( μ , υ ) ) S ( υ + ( 1 t ) ζ ( μ , υ ) )     ( t Υ ( υ ) + ( 1 t ) Υ ( μ ) ) S ( υ + ( 1 t ) ζ ( μ , υ ) ) .
And
Υ ( υ + t ζ ( μ ,   υ ) ) S ( υ + t ζ ( μ ,   υ ) ) ( ( 1 t ) Υ ( υ ) + t Υ ( μ ) ) S ( υ + t ζ ( μ ,   υ ) ) , Υ ( υ + t ζ ( μ ,   υ ) ) S ( υ + t ζ ( μ ,   υ ) ) ( ( 1 t ) Υ ( υ ) + t Υ ( μ ) ) S ( υ + t ζ ( μ ,   υ ) ) .
After adding (18) and (19), and integrating over [ 0 ,   1 ] , we get
0 1 Υ ( υ + ( 1 t ) ζ ( μ , υ ) ) S ( υ + ( 1 t ) ζ ( μ , υ ) ) d t   + 0 1 Υ ( υ + t ζ ( μ ,   υ ) ) S ( υ + t ζ ( μ ,   υ ) ) d t   0 1 [ Υ ( υ ) { t S ( υ + ( 1 t ) ζ ( μ , υ ) ) + ( 1 t ) S ( υ + t ζ ( μ ,   υ ) ) } + Υ ( μ ) { ( 1 t ) S ( υ + ( 1 t ) ζ ( μ , υ ) ) + t S ( υ + t ζ ( μ ,   υ ) ) } ] d t , 0 1 Υ ( υ + t ζ ( μ ,   υ ) ) S ( υ + t ζ ( μ ,   υ ) ) d t + 0 1 Υ ( υ + ( 1 t ) ζ ( μ , υ ) ) S ( υ + ( 1 t ) ζ ( μ , υ ) ) d t 0 1 [ Υ ( υ ) { t S ( υ + ( 1 t ) ζ ( μ , υ ) ) + ( 1 t ) S ( υ + t ζ ( μ ,   υ ) ) } + Υ ( μ ) { ( 1 t ) S ( υ + ( 1 t ) ζ ( μ , υ ) ) + t S ( υ + t ζ ( μ ,   υ ) ) } ] d t . = 2 Υ ( υ ) 0 1 t S ( υ + ( 1 t ) ζ ( μ , υ ) ) d t + 2 Υ ( μ ) 0 1 t S ( υ + t ζ ( μ ,   υ ) ) d t , = 2 Υ ( υ ) 0 1 t S ( υ + ( 1 t ) ζ ( μ , υ ) ) d t + 2 Υ ( μ ) 0 1 t S ( υ + t ζ ( μ ,   υ ) ) d t .
Since S is symmetric, then
= 2 [ Υ ( υ ) + Υ ( μ ) ] 0 1 t S ( υ + t ζ ( μ ,   υ ) ) d t , = 2 [ Υ ( υ ) + Υ ( μ ) ] 0 1 t S ( υ + t ζ ( μ ,   υ ) ) d t .
Since
0 1 Υ ( υ + ( 1 t ) ζ ( u , v ) ) S ( υ + ( 1 t ) ζ ( μ , υ ) ) d t = 0 1 Υ ( υ + t ζ ( u , v ) ) S ( υ + t ζ ( μ , υ ) ) d t = 1 ζ ( μ ,   υ ) υ υ + ζ ( μ ,   υ ) Υ ( ω ) S ( ω ) d ω , 0 1 Υ ( υ + t ζ ( u , v ) ) S ( υ + t ζ ( μ , υ ) ) d t = 0 1 Υ ( υ + ( 1 t ) ζ ( u , v ) ) S ( υ + ( 1 t ) ζ ( μ , υ ) ) d t = 1 ζ ( μ ,   υ ) υ υ + ζ ( μ ,   υ ) Υ ( ω ) S ( ω ) d ω .
From (21), we have
1 ζ ( μ ,   υ )   υ υ + ζ ( μ ,   υ ) Υ ( ω ) S ( ω ) d ω [ Υ ( υ ) + Υ ( μ ) ] 0 1 t S ( υ + t ζ ( μ ,   υ ) ) d t ,   1 ζ ( μ ,   υ )   υ υ + ζ ( μ ,   υ ) Υ ( ω ) S ( ω ) d ω   [ Υ ( υ ) + Υ ( μ ) ] 0 1 t S ( υ + t ζ ( μ ,   υ ) ) d t ,
that is
[ 1 ζ ( μ ,   υ )   υ υ + ζ ( μ ,   υ ) Υ ( ω ) S ( ω ) d ω ,   1 ζ ( μ ,   υ )   υ υ + ζ ( μ ,   υ ) Υ ( ω ) S ( ω ) d ω ] p [ Υ ( υ ) + Υ ( μ ) ,   Υ ( υ ) + Υ ( μ ) ] 0 1 t S ( υ + t ζ ( μ ,   υ ) ) d t
hence
1 ζ ( μ ,   υ )   ( I R ) υ υ + ζ ( μ ,   υ ) Υ ( ω ) S ( ω ) d ω p [ Υ ( υ ) + Υ ( μ ) ] 0 1 t S ( υ + t ζ ( μ ,   υ ) ) d t .
Now, we present the succeeding reformative version of the generalized version of first 𝓗-𝓗-Fejér inequalities for left and right preinvex IV-Fs.
Theorem 7.
Let Υ : [ υ ,   υ + ζ ( μ ,   υ ) ] K C + be a left and right preinvex IV-F with υ < υ + ζ ( μ ,   υ ) such that Υ ( ω ) = [ Υ ( ω ) ,   Υ ( ω ) ] for all ω [ υ ,   υ + ζ ( μ ,   υ ) ] . If Υ T ( [ υ ,   υ + ζ ( μ ,   υ ) ] ) and S : [ υ ,   υ + ζ ( μ ,   υ ) ] ,   S ( ω ) 0 , symmetric with respect to υ + 1 2 ζ ( μ ,   υ ) , and υ υ + ζ ( μ ,   υ ) S ( ω ) d ω > 0 , and Condition C for ζ , then
Υ ( υ + 1 2 ζ ( μ ,   υ ) ) p 1 υ υ + ζ ( μ ,   υ ) S ( ω ) d ω   ( I R ) υ υ + ζ ( μ ,   υ ) Υ ( ω ) S ( ω ) d ω .  
Proof. 
Using condition C, we can write
υ + 1 2 ζ ( μ ,   υ ) = υ + t ζ ( μ ,   υ ) + 1 2 ζ ( υ + ( 1 t ) ζ ( μ , υ ) ,   υ + t ζ ( μ , υ ) ) .
Since Υ is a left and right preinvex, we have
Υ ( υ + 1 2 ζ ( μ ,   υ ) ) = Υ ( υ + t ζ ( μ ,   υ ) + 1 2 ζ ( υ + ( 1 t ) ζ ( μ , υ ) ,   υ + t ζ ( μ , υ ) ) ) 1 2 ( Υ ( υ + ( 1 t ) ζ ( μ , υ ) ) + Υ ( υ + t ζ ( μ , υ ) ) ) , Υ ( υ + 1 2 ζ ( μ ,   υ ) ) = Υ ( υ + t ζ ( μ ,   υ ) + 1 2 ζ ( υ + ( 1 t ) ζ ( μ , υ ) ,   υ + t ζ ( μ , υ ) ) )   ( Υ ( υ + ( 1 t ) ζ ( μ , υ ) ) + Υ ( υ + t ζ ( μ , υ ) ) ) .
By multiplying (23) by S ( υ + ( 1 t ) ζ ( μ , υ ) ) = S ( υ + t ζ ( μ , υ ) ) and integrating it by t over [ 0 ,   1 ] , we obtain
Υ ( υ + 1 2 ζ ( μ ,   υ ) ) 0 1 S ( υ + t ζ ( μ ,   υ ) ) d t   1 2 ( 0 1 Υ ( υ + ( 1 t ) ζ ( μ , υ ) ) S ( υ + ( 1 t ) ζ ( μ ,   υ ) ) d t + 0 1 Υ ( υ + t ζ ( μ , υ ) ) d t S ( υ + t ζ ( μ ,   υ ) ) ) Υ ( υ + 1 2 ζ ( μ ,   υ ) ) 0 1 S ( υ + t ζ ( μ ,   υ ) ) d t 1 2 ( 0 1 Υ ( υ + ( 1 t ) ζ ( μ , υ ) ) S ( υ + ( 1 t ) ζ ( μ ,   υ ) ) d t + 0 1 Υ ( υ + t ζ ( μ , υ ) ) S ( υ + t ζ ( μ ,   υ ) ) d t ) .
Since
0 1 Υ ( υ + ( 1 t ) ζ ( μ , υ ) ) S ( υ + ( 1 t ) ζ ( μ , υ ) ) d t   = 0 1 Υ ( υ + t ζ ( μ ,   υ ) ) S ( υ + t ζ ( μ ,   υ ) ) d t = 1 ζ ( μ ,   υ )   υ υ + ζ ( μ ,   υ ) Υ ( ω ) S ( ω ) d ω 0 1 Υ ( υ + t ζ ( μ ,   υ ) ) S ( υ + t ζ ( μ ,   υ ) ) d t   = 0 1 Υ ( υ + ( 1 t ) ζ ( μ , υ ) ) S ( υ + ( 1 t ) ζ ( μ , υ ) ) d t = 1 ζ ( μ ,   υ )   υ υ + ζ ( μ ,   υ ) Υ ( ω ) S ( ω ) d ω .
From (25), we have
Υ ( υ + 1 2 ζ ( μ ,   υ ) )   1 υ υ + ζ ( μ ,   υ ) S ( ω ) d ω   υ υ + ζ ( μ ,   υ ) Υ ( ω ) S ( ω ) d ω ,   Υ ( υ + 1 2 ζ ( μ ,   υ ) )   1 υ υ + ζ ( μ ,   υ ) S ( ω ) d ω   υ υ + ζ ( μ ,   υ ) Υ ( ω ) S ( ω ) d ω .
From which, we have
[ Υ ( υ + 1 2 ζ ( μ ,   υ ) ) ,   Υ ( υ + 1 2 ζ ( μ ,   υ ) ) ]       p 1 υ υ + ζ ( μ ,   υ ) S ( ω ) d ω [   υ υ + ζ ( μ ,   υ ) Υ ( ω ) S ( ω ) d ω ,   υ υ + ζ ( μ ,   υ ) Υ ( ω ) S ( ω ) d ω ] ,  
that is
Υ ( υ + 1 2 ζ ( μ ,   υ ) ) p 1 υ υ + ζ ( μ ,   υ ) S ( ω ) d ω   ( I R ) υ υ + ζ ( μ ,   υ ) Υ ( ω ) S ( ω ) d ω .
This completes the proof. □
Remark 5.
If one considers taking ζ ( μ ,   υ ) = μ υ , then, by combining inequalities (17) and (22), we achieve the expected inequality.
If one considers taking Υ ( ω ) = Υ ( ω ) , then, by combining inequalities (17) and (22), we achieve the classical𝓗-𝓗-Fejér inequality, see[30].
If one considers taking Υ ( ω ) = Υ ω and ζ ( μ ,   υ ) = μ υ , then, by combining inequalities (17) and (22), we acquire the classical𝓗-𝓗-Fejér inequality, see[33].
Example 5.
We consider the IV-F Υ : [ 1 ,   1 + ζ ( 4 ,   1 ) ] K C + defined by Υ ( ω ) = [ 2 , 4 ] e ω . Since end point functions Υ ( ω ) ,   Υ ( ω ) are preinvex functions ζ ( ϰ , ω ) = ϰ ω , then, Υ ( ω ) is left and right preinvex IV-F. If
S ( ω ) = { ω 1 ,   σ [ 1 , 5 2 ] , 4 ω ,   σ ( 5 2 ,   4 ] .    
Then, we have
1 ζ ( 4 ,   1 ) 1 1 +   ζ ( 4 ,   1 ) Υ ( ω ) S ( ω ) d ω = 1 3 1 4 Υ ( ω ) S ( ω ) d ω   = 1 3 1 5 2 Υ ( ω ) S ( ω ) d ω + 1 3 5 2 4 Υ ( ω ) S ( ω ) d ω , 1 ζ ( 4 ,   1 ) 1 1 +   ζ ( 4 ,   1 ) Υ ( ω ) S ( ω ) d ω = 1 3 1 4 Υ ( ω ) S ( ω ) d ω = 1 3 1 5 2 Υ ( ω ) S ( ω ) d ω + 1 3 5 2 4 Υ ( ω ) S ( ω ) d ω , = 2 3 1 5 2 e ω ( ω 1 ) d ω + 2 3 5 2 4 e ω ( 4 ω ) d ω 22 , = 4 3 1 5 2 e ω ( ω 1 ) d ω + 4 3 5 2 4 e ω ( 4 ω ) d ω 44 ,
and
[ Υ ( υ ) + Υ ( μ ) ] 0 1 t S ( υ + t ζ ( μ ,   υ ) ) d t [ Υ ( υ ) + Υ ( μ ) ] 0 1 t S ( υ + t ζ ( μ ,   υ ) ) d t = 2 [ e + e 4 ]   [ 0 1 2 3 t 2 d ω + 1 2 1 t ( 3 3 t ) d t ] 43 . = 4 [ e + e 4 ] [ 0 1 2 3 t 2 d ω + 1 2 1 t ( 3 3 t ) d t ] 86 .
From (26) and (27), we have
[ 22 ,   44 ]   p [ 43 ,   86 ]
Hence, Theorem 6 is verified.
For Theorem 7, we have
Υ ( υ + 1 2 ζ ( μ ,   υ ) ) 122 5 ,   Υ ( υ + 1 2 ζ ( μ ,   υ ) ) 244 5 ,
υ υ + ζ ( μ ,   υ ) S ( ω ) d ω = 1 5 2 ( ω 1 ) d ω + 5 2 4 ( 4 ω ) d ω = 9 4 ,
1 υ υ + ζ ( μ ,   υ ) S ( ω ) d ω   1 4 Υ ( ω ) S ( ω ) d ω 146 5   1 υ υ + ζ ( μ ,   υ ) S ( ω ) d ω   1 4 Υ ( ω ) S ( ω ) d ω 293 5
From (28) and (29), we have
[ 122 5 ,   49 ]   p [ 146 5 ,   293 5 ] .
Hence, Theorem 7 is verified.

4. Conclusions and Prospective Results

In this study, the notion of left and right preinvex functions in interval-valued settings was presented. For left and right preinvex interval-valued functions, we constructed Hermite–Hadamard type inequalities, as well as for the product of two left and right preinvex interval-valued functions. We also established Hemite–Hadamard–Fejér type inequality. We also discussed some special cases and provided some examples to prove the validity of our main results. In future, we will seek to explore this concept by using different fractional integral operators, such as Riemann–Liouville fractional operators, Katugampola fractional operators and generalized K-fractional operators.
Finally, we think that our results may be relevant to other fractional calculus models having Mittag–Liffler functions in their kernels, such as Atangana–Baleanu and Prabhakar fractional operators. This consideration has been presented as an open problem for academics interested in this topic. Researchers who are interested might follow the steps outlined in the references [54,55].

Author Contributions

Conceptualization, M.B.K.; methodology, M.B.K.; validation, S.T., M.S.S. and H.G.Z.; formal analysis, K.N.; investigation, M.S.S.; resources, S.T.; data curation, H.G.Z.; writing—original draft preparation, M.B.K., K.N. and H.G.Z.; writing—review and editing, M.B.K. and S.T.; visualization, H.G.Z.; supervision, M.B.K. and M.S.S.; project administration, M.B.K.; funding acquisition, K.N., M.S.S. and H.G.Z. All authors have read and agreed to the published version of the manuscript.

Funding

The authors would like to thank the Rector, COMSATS University Islamabad, Islamabad, Pakistan, for providing excellent research support. This work was funded by Taif University Researchers Supporting Project number (TURSP-2020/345), Taif University, Taif, Saudi Arabia. In addition, this research has received funding support from the National Science, Research and Innovation Fund (NSRF), Thailand.

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

Not applicable.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Hanson, M.A. On sufficiency of the Kuhn-Tucker conditions. J. Math. Anal. Appl. 1981, 80, 545–550. [Google Scholar] [CrossRef] [Green Version]
  2. Weir, T.; Mond, B. Preinvex functions in multiple objective optimization. J. Math. Anal. Appl. 1988, 136, 29–38. [Google Scholar] [CrossRef] [Green Version]
  3. Wang, J.; Feckan, M. Fractional Hermite-Hadamard Inequalities; De Gruyter: Berlin, Germany, 2018; p. 5. [Google Scholar]
  4. İşcan, I. Hermite-Hadamard’s inequalities for preinvex functions via fractional integrals and related fractional inequalities. arXiv 2012, arXiv:1204.0272. [Google Scholar]
  5. Macías-Díaz, J.E.; Khan, M.B.; Noor, M.A.; Abd Allah, A.M.; Alghamdi, S.M. Hermite-Hadamard inequalities for generalized convex functions in interval-valued calculus. AIMS Math 2022, 7, 4266–4292. [Google Scholar] [CrossRef]
  6. Khan, M.B.; Zaini, H.G.; Treanțǎ, S.; Soliman, M.S.; Nonlaopon, K. Riemann–Liouville Fractional Integral Inequalities for Generalized Pre-Invex Functions of Interval-Valued Settings Based upon Pseudo Order Relation. Mathematics 2022, 10, 204. [Google Scholar] [CrossRef]
  7. Mohan, S.R.; Neogy, S.K. On invex sets and preinvex functions. J. Math. Anal. Appl. 1995, 189, 901–908. [Google Scholar] [CrossRef] [Green Version]
  8. Sharma, N.; Mishra, S.K.; Hamdi, A. A weighted version of Hermite-Hadamard type inequalities for strongly GA-convex functions. Int. J. Adv. Appl. Sci. 2020, 7, 113–118. [Google Scholar]
  9. Moore, R.E. Methods and Applications of Interval Analysis; SIAM: Philadelphia, PA, USA, 1979. [Google Scholar]
  10. Hilger, S. Ein Maßkettenkalkül mit Anwendung auf Zentrumsmannigfaltigkeiten. Ph.D. Thesis, Universitßt Würzburg, Würzburg, Germany, 1988. [Google Scholar]
  11. Agarwal, R.; O’Regan, D.; Saker, S. Dynamic Inequalities on Time Scales; Springer: Berlin/Heidelberg, Germany, 2014. [Google Scholar]
  12. Srivastava, H.M.; Tseng, K.-L.; Tseng, S.-J.; Lo, J.-C. Some weighted Opial type inequalities on time scales. Taiwan. J. Math. 2010, 14, 107–122. [Google Scholar] [CrossRef]
  13. Srivastava, H.M.; Tseng, K.-L.; Tseng, S.-J.; Lo, J.-C. Some generalization of Maroni’s inequality on time scales. Math. Inequal. Appl. 2011, 14, 469–480. [Google Scholar] [CrossRef]
  14. Wei, W.; Srivastava, H.M.; Zhang, Y.; Wang, L.; Shan, P.; Zhang, T. A local fractional integral inequality on fractal space analogous to Anderson’s inequality. Abstr. Appl. Anal. 2014, 2014, 5218–5229. [Google Scholar] [CrossRef] [Green Version]
  15. Tunç, T.; Sarikaya, M.Z.; Srivastava, H.M. Some generalized Steffensen’s inequalities via a new identity for local fractional integrals. Int. J. Anal. Appl. 2017, 13, 98–107. [Google Scholar]
  16. Srivastava, H.M.; Zhang, Z.-H.; Wu, Y.-D. Some further refinements and extensions of the Hermite-Hadamard and Jensen inequalities in several variables. Math. Comput. Model. 2011, 54, 2709–2717. [Google Scholar] [CrossRef]
  17. Bhurjee, A.K.; Panda, G. Efficient solution of interval optimization problem. Math. Methods Oper. Res. 2012, 76, 273–288. [Google Scholar] [CrossRef]
  18. Lupulescu, V. Hukuhara differentiability of interval-valued functions and interval differential equations on time scales. Inf. Sci. 2013, 248, 50–67. [Google Scholar] [CrossRef]
  19. Chalco-Cano, Y.; Lodwick, W.A.; Condori-Equice, W. Ostrowski type inequalities and applications in numerical integration for interval-valued functions. Soft Comput. 2015, 19, 3293–3300. [Google Scholar] [CrossRef]
  20. Roy, P.; Panda, G. Expansion of generalized Hukuhara differentiable interval-valued function. New Math. Nat. Comput. 2019, 15, 553–570. [Google Scholar] [CrossRef] [Green Version]
  21. Bhurjee, A.K.; Panda, G. Multi-objective interval fractional programming problems: An approach for obtaining efficient solutions. Opsearch 2015, 52, 156–167. [Google Scholar] [CrossRef]
  22. Bhurjee, A.K.; Panda, G. Sufficient optimality conditions and duality theory for interval optimization problem. Ann. Oper. Res. 2016, 243, 335–348. [Google Scholar] [CrossRef]
  23. Khan, M.B.; Noor, M.A.; Abdeljawad, T.; Mousa, A.A.A.; Abdalla, B.; Alghamdi, S.M. LR-Preinvex Interval-Valued Functions and Riemann–Liouville Fractional Integral Inequalities. Fractal Fract. 2021, 5, 243. [Google Scholar] [CrossRef]
  24. Khan, M.B.; Noor, M.A.; Al-Bayatti, H.M.; Noor, K.I. Some New Inequalities for LR-Log-h-Convex Interval-Valued Functions by Means of Pseudo Order Relation. Appl. Math. 2021, 15, 459–470. [Google Scholar]
  25. Lupulescu, V. Fractional calculus for interval-valued functions. Fuzzy Sets Syst. 2015, 265, 63–85. [Google Scholar] [CrossRef]
  26. An, Y.; Ye, G.; Zhao, D.; Liu, W. Hermite-Hadamard type inequalities for interval ( h 1 , h 2 ) -convex functions. Mathematics 2019, 7, 436. [Google Scholar] [CrossRef] [Green Version]
  27. Zhao, D.F.; An, T.Q.; Ye, G.J.; Torres, D.F.M. On Hermite-Hadamard type inequalities for harmonical h-convex interval-valued functions. Math. Inequal. Appl. 2020, 23, 95–105. [Google Scholar]
  28. Budak, H.; Tunç, T.; Sarikaya, M.Z. Fractional Hermite-Hadamard-type inequalities for interval-valued functions. Proc. Am. Math. Soc. 2019, 148, 705–718. [Google Scholar] [CrossRef] [Green Version]
  29. Khan, M.B.; Noor, M.A.; Noor, K.I.; Nisar, K.; Ismail, K.I.; Elfasakhany, A. Some Inequalities for LR- ( h 1 , h 2 ) h1, h2-Convex interval-valued functions by means of pseudo order relation. Int. J. Comput. Intell. Syst. 2021, 14, 1–15. [Google Scholar] [CrossRef]
  30. Noor, M.A. Hermite–Hadamard integral inequalities for log-preinvex functions. J. Math. Anal. Approx. Theory 2007, 5, 126–131. [Google Scholar]
  31. Hadamard, J. Étude sur les propriétés des fonctions entières et en particulier d’une fonction considérée par Riemann. J. Mathématiques Pures Appliquées 1893, 5, 171–215. [Google Scholar]
  32. Hermite, C. Sur deux limites d’une intégrale définie. Mathesis 1883, 3, 1–82. [Google Scholar]
  33. Pachpatte, B.G. On some inequalities for convex functions. RGMIA Res. Rep. Coll. 2003, 6, 1–9. [Google Scholar]
  34. Noor, M.A. Fuzzy preinvex functions. Fuzzy Sets Syst. 1994, 4, 95–104. [Google Scholar] [CrossRef]
  35. Noor, M.A.; Noor, K.I. On strongly generalized preinvex functions. J. Inequ. Pure Appl. Math. 2005, 6, 102. [Google Scholar]
  36. Zhang, D.; Guo, C.; Chen, D.; Wang, G. Jensen’s inequalities for set-valued and fuzzy set-valued functions. Fuzzy Sets Syst. 2020, 2020, 1–27. [Google Scholar] [CrossRef]
  37. Khan, M.B.; Noor, M.A.; Noor, K.I.; Chu, Y.M. New Hermite-Hadamard type inequalities for -convex fuzzy-interval-valued functions. Adv. Differ. Equ. 2021, 2021, 6–20. [Google Scholar] [CrossRef]
  38. Khan, M.B.; Mohammed, P.O.; Noor, M.A.; Baleanu, D.; Guirao, J. Some New Fractional Estimates of Inequalities for LR-p-Convex Interval-Valued Functions by Means of Pseudo Order Relation. Axioms 2021, 10, 175. [Google Scholar] [CrossRef]
  39. Khan, M.B.; Treanțǎ, S.; Budak, H. Generalized p-Convex Fuzzy-Interval-Valued Functions and Inequalities Based upon the Fuzzy-Order Relation. Fractal Fract. 2022, 6, 63. [Google Scholar] [CrossRef]
  40. Khan, M.B.; Srivastava, H.M.; Mohammed, P.O.; Macías-Díaz, J.E.; Hamed, Y.S. Some new versions of integral inequalities for log-preinvex fuzzy-interval-valued functions through fuzzy order relation. Alex. Eng. J. 2022, 61, 7089–7101. [Google Scholar] [CrossRef]
  41. Khan, M.B.; Srivastava, H.M.; Mohammed, P.O.; Guirao, J.L.; Jawa, T.M. Fuzzy-interval inequalities for generalized preinvex fuzzy interval valued functions. Math. Biosci. Eng. 2022, 19, 812–835. [Google Scholar] [CrossRef]
  42. Khan, M.B.; Mohammed, P.O.; Noor, M.A.; Hamed, Y.S. New Hermite-Hadamard inequalities in fuzzy-interval fractional calculus and related inequalities. Symmetry 2021, 13, 673. [Google Scholar] [CrossRef]
  43. Khan, M.B.; Mohammed, P.O.; Noor, M.A.; Alsharif, A.M.; Noor, K.I. New fuzzy-interval inequalities in fuzzy-interval fractional calculus by means of fuzzy order relation. AIMS Math 2021, 6, 10964–10988. [Google Scholar] [CrossRef]
  44. Khan, M.B.; Noor, M.A.; Mohammed, P.O.; Guirao, J.L.; Noor, K.I. Some Integral Inequalities for Generalized Convex Fuzzy-Interval-Valued Functions via Fuzzy Riemann Integrals. Int. J. Comput. Intell. Syst. 2021, 14, 1–15. [Google Scholar] [CrossRef]
  45. Khan, M.B.; Noor, M.A.; Al-Shomrani, M.M.; Abdullah, L. Some novel inequalities for LR-h-convex interval-valued functions by means of pseudo-order relation. Math. Methods Appl. Sci. 2022, 45, 1310–1340. [Google Scholar] [CrossRef]
  46. Khan, M.B.; Noor, M.A.; Abdullah, L.; Chu, Y.M. Some New Classes of Preinvex Fuzzy-Interval-Valued Functions and Inequalities. Int. J. Comput. Intell. Syst. 2021, 14, 1403–1418. [Google Scholar] [CrossRef]
  47. Liu, P.; Khan, M.B.; Noor, M.A.; Noor, K.I. New Hermite-Hadamard and Jensen inequalities for log-s-convex fuzzy-interval-valued functions in the second sense. Complex Intell. Syst. 2021, 2021, 1–15. [Google Scholar] [CrossRef]
  48. Sana, G.; Khan, M.B.; Noor, M.A.; Mohammed, P.O.; Chu, Y.M. Harmonically convex fuzzy-interval-valued functions and fuzzy-interval Riemann–Liouville fractional integral inequalities. Int. J. Comput. Intell. Syst. 2021, 14, 1809–1822. [Google Scholar] [CrossRef]
  49. Khan, M.B.; Mohammed, P.O.; Noor, M.A.; Abualnaja, K.M. Fuzzy integral inequalities on coordinates of convex fuzzy interval-valued functions. Math. Biosci. Eng. 2021, 18, 6552–6580. [Google Scholar] [CrossRef]
  50. Khan, M.B.; Treanțǎ, S.; Soliman, M.S.; Nonlaopon, K.; Zaini, H.G. Some Hadamard–Fejér Type Inequalities for LR-Convex Interval-Valued Functions. Fractal Fract. 2022, 6, 6. [Google Scholar] [CrossRef]
  51. Khan, M.B.; Srivastava, H.M.; Mohammed, P.O.; Nonlaopon, K.; Hamed, Y.S. Some new Jensen, Schur and Hermite-Hadamard inequalities for log convex fuzzy interval-valued functions. AIMS Math 2022, 7, 4338–4358. [Google Scholar] [CrossRef]
  52. Khan, M.B.; Mohammed, P.O.; Machado, J.A.T.; Guirao, J.L. Integral Inequalities for Generalized Harmonically Convex Functions in Fuzzy-Interval-Valued Settings. Symmetry 2021, 13, 2352. [Google Scholar] [CrossRef]
  53. Khan, M.B.; Srivastava, H.M.; Mohammed, P.O.; Baleanu, D.; Jawa, T.M. Fuzzy-interval inequalities for generalized convex fuzzy-interval-valued functions via fuzzy Riemann integrals. AIMS Math 2022, 7, 1507–1535. [Google Scholar] [CrossRef]
  54. Fernandez, A.; Mohammed, P. Hermite-Hadamard inequalities in fractional calculus defined using Mittag-Leffler kernels. Math. Meth. Appl. Sci. 2020, 2020, 1–18. [Google Scholar] [CrossRef]
  55. Mohammed, P.O.; Abdeljawad, T. Integral inequalities for a fractional operator of a function with respect to another function with nonsingular kernel. Adv. Differ. Equ. 2020, 2020, 363. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

MDPI and ACS Style

Khan, M.B.; Treanțǎ, S.; Soliman, M.S.; Nonlaopon, K.; Zaini, H.G. Some New Versions of Integral Inequalities for Left and Right Preinvex Functions in the Interval-Valued Settings. Mathematics 2022, 10, 611. https://doi.org/10.3390/math10040611

AMA Style

Khan MB, Treanțǎ S, Soliman MS, Nonlaopon K, Zaini HG. Some New Versions of Integral Inequalities for Left and Right Preinvex Functions in the Interval-Valued Settings. Mathematics. 2022; 10(4):611. https://doi.org/10.3390/math10040611

Chicago/Turabian Style

Khan, Muhammad Bilal, Savin Treanțǎ, Mohamed S. Soliman, Kamsing Nonlaopon, and Hatim Ghazi Zaini. 2022. "Some New Versions of Integral Inequalities for Left and Right Preinvex Functions in the Interval-Valued Settings" Mathematics 10, no. 4: 611. https://doi.org/10.3390/math10040611

APA Style

Khan, M. B., Treanțǎ, S., Soliman, M. S., Nonlaopon, K., & Zaini, H. G. (2022). Some New Versions of Integral Inequalities for Left and Right Preinvex Functions in the Interval-Valued Settings. Mathematics, 10(4), 611. https://doi.org/10.3390/math10040611

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop