Approximation of GBS Type q-Jakimovski-Leviatan-Beta Integral Operators in Bögel Space
Abstract
:1. Introduction and Preliminaries
2. Operators and Their Associated Moments
3. Approximation in Weighted Space and Degree of Convergence
4. GBS-Type Approximation in Bögel Space
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Szász, O. Generalization of Bernstein’s polynomials to the infinite interval. J. Res. Nat. Bur. Stds. 1950, 45, 239–245. [Google Scholar] [CrossRef]
- Appell, P. Une classe de polynômes. Ann. Sci. École Norm. Sup. 1880, 9, 119–144. [Google Scholar] [CrossRef] [Green Version]
- Büyükyazıcı, İ.; Tanberkan, H.; Serenbay, S.; Atakut, C. Approximation by Chlodowsky type Jakimovski-Leviatan operators. J. Comput. Appl. Math. 2014, 259, 153–163. [Google Scholar] [CrossRef]
- Cai, Q.B.; Çekim, B.; Íçöz, G. Gamma Generalization Operators Involving Analytic Functions. Mathematics 2021, 9, 1547. [Google Scholar] [CrossRef]
- Çekim, B.; Aktaş, R.; Íçöz, G. Kantorovich-Stancu type operators including Boas-Buck type polynomials. Hacet. J. Math. Stat. 2019, 48, 460–471. [Google Scholar] [CrossRef]
- Çekim, B.; Taşdelen, F. A Kantorovich-Stancu Type Generalization of Szasz Operators including Brenke Type Polynomials. J. Funct. Spaces Appl. 2013, 9, 935430. [Google Scholar]
- Mursaleen, M.; Khan, T. On approximation by Stancu type Jakimovski-Leviatan-Durrmeyer operators. Azerb. J. Math. 2017, 7, 16–26. [Google Scholar] [CrossRef] [Green Version]
- Sucu, S.; Varma, S. Approximation by Sequence of Operators Involving Analytic Functions. Mathematics 2019, 7, 188. [Google Scholar] [CrossRef] [Green Version]
- Sucu, S.; Íçöz, G.; Varma, S. On Some Extensions of Szász Operators Including Boas-Buck-Type Polynomials. Abstr. Appl. Anal. 2012, 2012, 680340. [Google Scholar] [CrossRef] [Green Version]
- Varmaa, S.; Sucua, S.; İçözb, G. Generalization of Szasz operators involving Brenke type polynomials. Comput. Math. Appl. 2012, 64, 121–127. [Google Scholar] [CrossRef] [Green Version]
- Al-Salam, W.A. q-Appell polynomials. Ann. Mat. Pura Appl. 1967, 4, 31–45. [Google Scholar] [CrossRef]
- Keleshteri, M.E.; Mahmudov, N.I. A study on q-Appell polynomials from determinantal point of view. Appl. Math. Comp. 2015, 260, 351–369. [Google Scholar] [CrossRef] [Green Version]
- Alotaibi, A.; Mursaleen, M. Approximation of Jakimovski-Leviatan-Beta type integral operators via q-calculus. AIMS Math. 2020, 5, 3019–3034. [Google Scholar] [CrossRef]
- Nasiruzzaman, M. Approximation properties by Szász operators to bivariate functions via Dunkl analogue. Iran. J. Sci. Technol. Trans. Sci. 2021, 45, 259–269. [Google Scholar] [CrossRef]
- Nasiruzzaman, M.; Aljohani, A.F. Approximation by Szász-Jakimovski-Leviatan type operators via aid of Appell polynomials. J. Funct. Spaces 2020, 2020, 9657489. [Google Scholar] [CrossRef]
- Nasiruzzaman, M.; Aljohani, A.F. Approximation by parametric extension of Szász-Mirakjan-Kantorovich operators involving the Appell polynomials. J. Funct. Spaces 2020, 2020, 8863664. [Google Scholar] [CrossRef]
- Nasiruzzaman, M.; Mursaleen, M. Approximation by Jakimovski-Leviatan-Beta operators in weighted space. Adv. Differ. Equ. 2020, 2020, 393. [Google Scholar] [CrossRef]
- Nasiruzzaman, M.; Rao, N.; Kumar, M.; Kumar, R. Approximation on bivariate parametric-extension of Baskakov-Durrmeyer-operators. Filomat 2021, 35, 2783–2800. [Google Scholar] [CrossRef]
- Nasiruzzaman, M.; Ansari, K.J.; Mursaleen, M. On the parametric approximation results of Phillips operators involving the q-Appell polynomials. Iran. J. Sci. Technol. Trans. Sci. 2021, 46, 251–263. [Google Scholar] [CrossRef]
- Mohiuddine, S.A.; Acar, T.; Alotaibi, A. Construction of a new family of Bernstein-Kantorovich operators. Math. Meth. Appl. Sci. 2017, 40, 7749–7759. [Google Scholar] [CrossRef]
- Mohiuddine, S.A.; Ahmad, N.; Özger, F.; Alotaibi, A.; Hazarika, B. Approximation by the parametric generalization of Baskakov-Kantorovich operators linking with Stancu operators. Iran. J. Sci. Technol. Trans. Sci. 2021, 45, 593–605. [Google Scholar] [CrossRef]
- Mohiuddine, S.A.; Hazarika, B.; Alghamdi, M.A. Ideal relatively uniform convergence with Korovkin and Voronovskaya types approximation theorems. Filomat 2019, 33, 4549–4560. [Google Scholar] [CrossRef] [Green Version]
- Mohiuddine, S.A.; Özger, F. Approximation of functions by Stancu variant of Bernstein-Kantorovich operators based on shape parameter α. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math. RACSAM 2020, 114, 70. [Google Scholar] [CrossRef]
- Mursaleen, M.; Ansari, K.J.; Nasiruzzaman, M. Approximation by q-analogue of Jakimovski-Leviatan operators involving q-Appell polynomials. Iran. J. Sci. Technol. Trans. Sci. 2017, 41, 891–900. [Google Scholar] [CrossRef]
- Mursaleen, M.; Nasiruzzaman, M. Dunkl generalization of Kantorovich type Szasz-Mirakjan operators via q-calculus. Asian Eur. J. Math. 2017, 10, 1750077. [Google Scholar] [CrossRef]
- Acar, T.; Kajla, A. Degree of Approximation for bivariate generalized Bernstein type operators. Results Math. 2018, 73, 79. [Google Scholar] [CrossRef]
- Kajla, A.; Mohiuddine, S.A.; Alotaibi, A. Blending-type approximation by Lupaş-Durrmeyer-type operators involving Pólya distribution. Math. Meth. Appl. Sci. 2021, 44, 9407–9418. [Google Scholar] [CrossRef]
- Özger, F.; Srivastava, H.M.; Mohiuddine, S.A. Approximation of functions by a new class of generalized Bernstein-Schurer operators. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math. RACSAM 2020, 114, 173. [Google Scholar] [CrossRef]
- Rao, N.; Nasiruzzaman, M.; Heshamuddin, M.; Shadab, M. Approximation properties by modified Baskakov-Durrmeyer operators based on shape Parameter α. Iran. J. Sci. Technol. Trans. Sci. 2021, 45, 1457–1465. [Google Scholar] [CrossRef]
- Rao, N.; Wafi, A.; Acu, A.M. q-Szász-Durrmeyer type operators based on Dunkl analogue. Complex Anal. Oper. Theory 2019, 13, 915–934. [Google Scholar] [CrossRef]
- Gadẑiev, A.D. Positive linear operators in weighted spaces of functions of several variables, Izv. Akad. Nauk Azerbaidzhan. SSR Ser. Fiz.-Tekhn. Mat. Nauk. 1980, 4, 32–37. [Google Scholar]
- Gadẑiev, A.D.; Hacisalihoglu, H. Convergence of the Sequences of Linear Positive Operators; Ankara University: Yenimahalle, UK, 1995. [Google Scholar]
- Agrawal, P.N.; Ispir, N.; Kajla, A. GBS Operators of Lupaş-Durrmeyer Type Based on Polya Distribution. Results Math. 2016, 69, 397–418. [Google Scholar] [CrossRef]
- Bărbosu, D. On the approximation some GBS type operators. Bul. Ştiinţ. Univ. Baia. Mare Ser. B Math.-Inform. 2000, 16, 247–254. [Google Scholar]
- Bögel, K. Mehrdimensionale differentiation von Funktionen mehrerer veränderlichen. J. Reine Angew. Math. 1934, 170, 197–217. [Google Scholar]
- Bögel, K. Über die mehrdimensionale differentiation. Jahresber. Dtsch. Math. Ver. 1935, 65, 45–71. [Google Scholar]
- Cai, Q.B.; Cheng, W.T.; Çekim, B. Bivariate α,q-Bernstein-Kantorovich operators and GBS operators of bivariate α,q-Bernstein-Kantorovich type. Mathematics 2019, 7, 1161. [Google Scholar] [CrossRef] [Green Version]
- Mohiuddine, S.A. Approximation by bivariate generalized Bernstein-Schurer operators and associated GBS operators. Adv. Differ. Equ. 2020, 2020, 676. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alotaibi, A. Approximation of GBS Type q-Jakimovski-Leviatan-Beta Integral Operators in Bögel Space. Mathematics 2022, 10, 675. https://doi.org/10.3390/math10050675
Alotaibi A. Approximation of GBS Type q-Jakimovski-Leviatan-Beta Integral Operators in Bögel Space. Mathematics. 2022; 10(5):675. https://doi.org/10.3390/math10050675
Chicago/Turabian StyleAlotaibi, Abdullah. 2022. "Approximation of GBS Type q-Jakimovski-Leviatan-Beta Integral Operators in Bögel Space" Mathematics 10, no. 5: 675. https://doi.org/10.3390/math10050675
APA StyleAlotaibi, A. (2022). Approximation of GBS Type q-Jakimovski-Leviatan-Beta Integral Operators in Bögel Space. Mathematics, 10(5), 675. https://doi.org/10.3390/math10050675