Statistical Analysis of the Lifetime Distribution with Bathtub-Shaped Hazard Function under Lagged-Effect Step-Stress Model
Abstract
:1. Introduction
1.1. Chen Distribution
1.2. Step-Stress Model with Lagged Effect
2. Model Description
3. Point Estimation
3.1. Maximum Likelihood Estimation
3.2. Least Squares Estimation
4. Interval Estimation
4.1. Observed Fisher Information Matrix
4.2. Asymptotic Confidence Interval
5. Simulation Results and Analysis
- (1)
- No matter which values the parameters take, the estimated values are close to the real values, and mostly the bias and mean square errors decrease with the increase in sample size, which shows that the two estimations are effective.
- (2)
- From the perspective of bias, the results of LSE are generally better than MLE when ; the results of MLE are generally better than LSE when and . This means that LSE is preferred when the sample size is small, while MLE is preferred when the sample size is large.
- (3)
- Under different parameters, the mean square errors of LSEs are generally less than that of MLEs, and the advantage of LSE in the mean square errors is more obvious when the sample size n is small.
- (4)
- In terms of the asymptotic confidence intervals, generally, the coverage probabilities of the 95% are close to 95%, and the coverage probabilities of the 99% are close to 99%, which verifies the correctness of the methods. The coverage probabilities are closer to 1- with the increase in the sample size, which means the asymptotic confidence intervals will be more precise when the sample size is larger.
- (5)
- In general, the estimations perform better when the hazard function under the first stress is bathtub-shaped and under the second stress is monotonically increasing. The coverage probabilities fit better when the risk function is monotonically increasing under both stress levels.
- (6)
6. A Special Case
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Appendix A.1. The Expressions of a ^(β 1, β 2 ) and b ^(β 1, β 2)
Appendix A.2. The Specific Elements of I
Appendix A.3. The Expression of C 1 and C 2
References
- Chen, Z. A new two-parameter lifetime distribution with bathtub shape or increasing failure rate function. Stat. Probab. Lett. 2000, 49, 155–161. [Google Scholar] [CrossRef]
- Wu, J.-W.; Lu, H.-L.; Chen, C.-H.; Wu, C.-H. Statistical inference about the shape parameter of the new two-parameter bathtub-shaped lifetime distribution. Qual. Reliab. Eng. Int. 2004, 20, 607–616. [Google Scholar] [CrossRef]
- Wu, S.; Wu, C.-C.; Lin, H.-M. The exact hypothesis test for the shape parameter of a new two-parameter distribution with the bathtub shape or increasing failure rate function under progressive censoring with random removals. J. Stat. Comput. Simul. 2009, 79, 1015–1042. [Google Scholar] [CrossRef]
- Wang, R.; Sha, N.; Gu, B.; Xu, X. Statistical analysis of a Weibull extension with bathtub-shaped failure rate function. Adv. Stat. 2014, 2014, 304724. [Google Scholar] [CrossRef] [Green Version]
- Jiang, R. A new bathtub curve model with a finite support. Reliab. Eng. Syst. Saf. 2013, 119, 44–51. [Google Scholar] [CrossRef]
- Rastogi, M.K.; Tripathi, Y.M. Estimation using hybrid censored data from a two-parameter distribution with bathtub shape. Comput. Stat. Data Anal. 2013, 67, 268–281. [Google Scholar] [CrossRef]
- Shoaee, S.; Khorram, E. Stress-strength reliability of a two-parameter bathtub-shaped lifetime distribution based on progressively censored samples. Commun. Stat.-Theory Methods 2015, 44, 5306–5328. [Google Scholar] [CrossRef]
- Kayal, T.; Tripathi, Y.; Singh, D.P.; Rastogi, M. Estimation and prediction for Chen distribution with bathtub shape under progressive censoring. J. Stat. Comput. Simul. 2016, 87, 348–366. [Google Scholar] [CrossRef]
- Raqab, M.; Bdair, O.; Al-Aboud, F. Inference for the two-parameter bathtub-shaped distribution based on record data. Metrika 2018, 81, 229–253. [Google Scholar] [CrossRef]
- Sedyakin, N. On one physical principle in reliability theory. Tech. Cybern. 1966, 3, 80–87. [Google Scholar]
- Nelson, W. Accelerated life testing—Step-stress models and data analyses. IEEE Trans. Reliab. 1980, 29, 103–108. [Google Scholar] [CrossRef]
- Miller, R.; Nelson, W. Optimum simple step-stress plans for accelerated life testing. IEEE Trans. Reliab. 1983, 32, 59–65. [Google Scholar] [CrossRef]
- Bhattacharyya, G.K.; Zanzawi, S. A tampered failure rate model for step-stress accelerated life test. Commun. Stat.-Theory Methods 1989, 18, 1627–1643. [Google Scholar] [CrossRef]
- Balakrishnan, N.; Xie, Q. Exact inference for a simple step-stress model with Type-I hybrid censored data from the Exponential distribution. J. Stat. Plan. Inference 2007, 137, 3268–3290. [Google Scholar] [CrossRef]
- Balakrishnan, N.; Han, D. Exact inference for a simple step-stress model with competing risks for failure from exponential distribution under Type-II censoring. J. Stat. Plan. Inference 2008, 138, 4172–4186. [Google Scholar] [CrossRef]
- Yuan, T.; Liu, X. Planning simple step-stress accelerated life tests using Bayesian methods. IEEE Trans. Reliab. 2012, 61, 254–263. [Google Scholar] [CrossRef]
- Ismail, A.A. Statistical inference for a step-stress partially-accelerated life test model with an adaptive Type-I progressively hybrid censored data from Weibull distribution. Stat. Pap. 2016, 57, 271–301. [Google Scholar] [CrossRef]
- Shi, X.; Lu, P.; Shi, Y. Inference and optimal design on step-stress partially accelerated life test for hybrid system with masked data. J. Syst. Eng. Electron. 2018, 29, 1089–1100. [Google Scholar]
- Kannan, N.; Kundu, D.; Balakrishnan, N. Survival Models for Step-Stress Experiments with Lagged Effects; Chapter Advances in Degradation Modeling; Birkhäuser: Boston, MA, USA, 2010; pp. 355–369. [Google Scholar]
- Yao, J.; Luo, R. Step-stress accelerated degradation test model of storage life based on lagged effect for electronic products. In The 19th International Conference on Industrial Engineering and Engineering Management; Qi, E., Shen, J., Dou, R., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 541–550. [Google Scholar]
- Beltrami, J. Exponential competing risk step-stress model with lagged effect. Int. J. Math. Stat. 2015, 16, 1–24. [Google Scholar]
- Beltrami, J. Weibull lagged effect step-stress model with competing risks. Commun. Stat.-Theory Methods 2016, 46, 5419–5442. [Google Scholar] [CrossRef]
- Huang, W.; Zhou, J.; Ning, J. Competing risks model for step-stress experiments under lagged effects with masked data. J. Inf. Comput. Sci. 2015, 12, 495–502. [Google Scholar] [CrossRef]
- Shafiq, M.; Atif, M. On the survival models for step-stress experiments based on fuzzy life time data. Qual. Quant. 2017, 51, 79–91. [Google Scholar] [CrossRef]
- Kannan, N.; Kundu, D. Weibull step-stress model with a lagged effect. Am. J. Math. Manag. Sci. 2018, 37, 33–50. [Google Scholar] [CrossRef]
- Hong, H.; Li, J. The numerical delta method. J. Econom. 2018, 206, 379–394. [Google Scholar] [CrossRef]
n | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
50 | MLE | 0.5469 | 0.0454 | 0.0247 | 0.2580 | 0.8359 | 0.944 | 0.1666 | 0.9273 | 0.984 | |
LSE | 0.5165 | 0.0149 | 0.0173 | ||||||||
MLE | 1.0326 | 0.0311 | 0.1454 | 0 | 2.5273 | 0.964 | 0 | 3.0001 | 0.981 | ||
LSE | 0.6894 | −0.3121 | 0.0137 | ||||||||
MLE | 0.7597 | 0.0597 | 0.0473 | 0.3832 | 1.1362 | 0.947 | 0.2641 | 1.2553 | 0.988 | ||
LSE | 0.7294 | 0.0294 | 0.0191 | ||||||||
MLE | 1.1487 | 0.2487 | 0.2595 | 0.2605 | 2.0368 | 0.901 | -0.0204 | 2.3178 | 0.964 | ||
LSE | 1.1840 | 0.2840 | 0.0512 | ||||||||
100 | MLE | 0.5181 | 0.0165 | 0.0102 | 0.3220 | 0.7142 | 0.948 | 0.2599 | 0.7762 | 0.993 | |
LSE | 0.5286 | 0.0270 | 0.0089 | ||||||||
MLE | 1.1001 | 0.0986 | 1.6755 | 0.1456 | 2.0545 | 0.953 | 0 | 2.3564 | 0.984 | ||
LSE | 0.7872 | −0.2143 | 0.0114 | ||||||||
MLE | 0.7238 | 0.0238 | 0.0178 | 0.4708 | 0.9768 | 0.951 | 0.3907 | 1.0568 | 0.988 | ||
LSE | 0.7327 | 0.0327 | 0.0095 | ||||||||
MLE | 1.0009 | 0.1009 | 0.1027 | 0.4122 | 1.5896 | 0.917 | 0.2259 | 1.7758 | 0.970 | ||
LSE | 1.0530 | 0.1530 | 0.0117 | ||||||||
200 | MLE | 0.5108 | 0.0092 | 0.0047 | 0.3736 | 0.6480 | 0.960 | 0.3302 | 0.6914 | 0.992 | |
LSE | 0.5171 | 0.0155 | 0.0049 | ||||||||
MLE | 0.9841 | −0.0173 | 0.1017 | 0.3514 | 1.6168 | 0.969 | 0.1512 | 1.8170 | 0.995 | ||
LSE | 0.8632 | −0.1382 | 0.0072 | ||||||||
MLE | 0.7143 | 0.0143 | 0.0089 | 0.5382 | 0.8904 | 0.953 | 0.4825 | 0.9462 | 0.988 | ||
LSE | 0.7210 | 0.0210 | 0.0041 | ||||||||
MLE | 0.9707 | 0.0707 | 0.0439 | 0.5673 | 1.3740 | 0.930 | 0.4397 | 1.5016 | 0.977 | ||
LSE | 0.9881 | 0.0881 | 0.0046 |
n | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
50 | MLE | 0.5406 | 0.0390 | 0.0278 | 0.2367 | 0.8444 | 0.947 | 0.1406 | 0.9406 | 0.981 | |
LSE | 0.5392 | 0.0376 | 0.0221 | ||||||||
MLE | 1.0617 | 0.0602 | 0.3453 | 0.2177 | 1.9056 | 0.955 | 0 | 2.1726 | 0.988 | ||
LSE | 0.8517 | −0.1498 | 0.0387 | ||||||||
MLE | 0.7529 | 0.0529 | 0.0489 | 0.3675 | 1.1382 | 0.944 | 0.2456 | 1.2602 | 0.979 | ||
LSE | 0.7409 | 0.0409 | 0.0194 | ||||||||
MLE | 1.0346 | 0.1346 | 0.1296 | 0.3951 | 1.6742 | 0.930 | 0.1928 | 1.8765 | 0.983 | ||
LSE | 1.0550 | 0.1550 | 0.0041 | ||||||||
100 | MLE | 0.5205 | 0.0189 | 0.0130 | 0.3122 | 0.7288 | 0.931 | 0.2464 | 0.7947 | 0.981 | |
LSE | 0.5247 | 0.0231 | 0.0124 | ||||||||
MLE | 1.0101 | 0.0086 | 0.1397 | 0.4483 | 1.5719 | 0.953 | 0.2706 | 1.7496 | 0.984 | ||
LSE | 0.8970 | −0.1044 | 0.0212 | ||||||||
MLE | 0.7259 | 0.0259 | 0.0189 | 0.4647 | 0.9872 | 0.952 | 0.3820 | 1.0698 | 0.990 | ||
LSE | 0.7302 | 0.0302 | 0.0107 | ||||||||
MLE | 0.9733 | 0.0733 | 0.0555 | 0.5470 | 1.3996 | 0.927 | 0.4122 | 1.5345 | 0.978 | ||
LSE | 0.9928 | 0.0928 | 0.0012 | ||||||||
200 | MLE | 0.5099 | 0.0083 | 0.0058 | 0.3649 | 0.6549 | 0.949 | 0.3191 | 0.7007 | 0.987 | |
LSE | 0.5235 | 0.0219 | 0.0063 | ||||||||
MLE | 1.0059 | 0.0044 | 0.0406 | 0.6175 | 1.3943 | 0.953 | 0.4946 | 1.5172 | 0.992 | ||
LSE | 0.9280 | −0.0735 | 0.0124 | ||||||||
MLE | 0.7135 | 0.0135 | 0.0086 | 0.5323 | 0.8947 | 0.949 | 0.4750 | 0.9520 | 0.988 | ||
LSE | 0.7201 | 0.0201 | 0.0047 | ||||||||
MLE | 0.9285 | 0.0285 | 0.0225 | 0.6366 | 1.2204 | 0.948 | 0.5442 | 1.3128 | 0.992 | ||
LSE | 0.9569 | 0.0569 | 0.0041 |
n | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
50 | MLE | 0.9009 | 0.1367 | 0.2990 | 0.2552 | 1.5466 | 0.940 | 0.0509 | 1.7509 | 0.987 | |
LSE | 0.8342 | 0.0700 | 0.0793 | ||||||||
MLE | 1.1245 | 0.0185 | 0.1404 | 0.4643 | 1.7848 | 0.938 | 0.2554 | 1.9937 | 0.978 | ||
LSE | 1.0138 | −0.0923 | 0.0563 | ||||||||
MLE | 1.0870 | 0.0870 | 0.1224 | 0.5168 | 1.6572 | 0.944 | 0.3364 | 1.8376 | 0.982 | ||
LSE | 1.0527 | 0.0527 | 0.0511 | ||||||||
MLE | 1.3984 | 0.1984 | 0.2188 | 0.5822 | 2.2146 | 0.940 | 0.324 | 2.4727 | 0.989 | ||
LSE | 1.3959 | 0.1959 | 0.0055 | ||||||||
100 | MLE | 0.8139 | 0.0497 | 0.0504 | 0.3951 | 1.2326 | 0.950 | 0.2627 | 1.3651 | 0.988 | |
LSE | 0.8284 | 0.0643 | 0.0451 | ||||||||
MLE | 1.1094 | 0.0033 | 0.0576 | 0.6578 | 1.5613 | 0.942 | 0.5152 | 1.7038 | 0.984 | ||
LSE | 1.0331 | −0.0730 | 0.0343 | ||||||||
MLE | 1.0354 | 0.0354 | 0.0390 | 0.6529 | 1.4179 | 0.955 | 0.5319 | 1.5389 | 0.988 | ||
LSE | 1.0504 | 0.0504 | 0.0249 | ||||||||
MLE | 1.2926 | 0.0926 | 0.0779 | 0.7531 | 1.8323 | 0.951 | 0.5823 | 2.003 | 0.989 | ||
LSE | 1.3152 | 0.1152 | 0.0015 | ||||||||
200 | MLE | 0.7859 | 0.0217 | 0.0208 | 0.4976 | 1.0741 | 0.957 | 0.4064 | 1.1653 | 0.994 | |
LSE | 0.8156 | 0.0514 | 0.0219 | ||||||||
MLE | 1.1142 | 0.0082 | 0.0290 | 0.7977 | 1.4307 | 0.947 | 0.6976 | 1.5309 | 0.987 | ||
LSE | 1.0520 | −0.0541 | 0.0170 | ||||||||
MLE | 1.0168 | 0.0168 | 0.0184 | 0.7512 | 1.2823 | 0.963 | 0.6672 | 1.3664 | 0.993 | ||
LSE | 1.0339 | 0.0339 | 0.0122 | ||||||||
MLE | 1.2398 | 0.0398 | 0.0382 | 0.8716 | 1.6081 | 0.949 | 0.7551 | 1.7246 | 0.992 | ||
LSE | 1.2693 | 0.0693 | 0.0005 |
n | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
50 | MLE | 0.3705 | 0.0027 | 0.0048 | 0.2254 | 0.5157 | 0.977 | 0.1795 | 0.5616 | 0.996 | |
LSE | 0.3761 | 0.0082 | 0.0061 | ||||||||
MLE | 0.0295 | −0.0508 | 0.5604 | 0 | 0.2688 | 0.981 | 0 | 0.3445 | 0.994 | ||
LSE | 0.0426 | −0.0376 | 0.0001 | ||||||||
MLE | 0.8371 | 0.0371 | 0.0278 | 0.5147 | 1.1595 | 0.954 | 0.4127 | 1.2615 | 0.990 | ||
LSE | 0.8159 | 0.0159 | 0.0105 | ||||||||
MLE | 1.3156 | 0.1156 | 0.0826 | 0.7707 | 1.8606 | 0.871 | 0.5984 | 2.0329 | 0.936 | ||
LSE | 1.3586 | 0.1586 | 0.0133 | ||||||||
100 | MLE | 0.3715 | 0.0036 | 0.0024 | 0.2717 | 0.4714 | 0.972 | 0.2401 | 0.5029 | 0.991 | |
LSE | 0.3737 | 0.0058 | 0.0031 | ||||||||
MLE | 0.0908 | 0.0106 | 0.0077 | 0 | 0.2173 | 0.969 | 0 | 0.2573 | 0.993 | ||
LSE | 0.0552 | −0.0250 | 0.0001 | ||||||||
MLE | 0.8204 | 0.0204 | 0.0141 | 0.5984 | 1.0424 | 0.943 | 0.5282 | 1.1126 | 0.995 | ||
LSE | 0.8161 | 0.0161 | 0.0052 | ||||||||
MLE | 1.2495 | 0.0495 | 0.0363 | 0.8793 | 1.6197 | 0.923 | 0.7622 | 1.7368 | 0.969 | ||
LSE | 1.2895 | 0.0895 | 0.0035 | ||||||||
200 | MLE | 0.3711 | 0.0032 | 0.0012 | 0.3016 | 0.4405 | 0.965 | 0.2796 | 0.4625 | 0.994 | |
LSE | 0.3709 | 0.0030 | 0.0015 | ||||||||
MLE | 0.0791 | −0.0011 | 0.0019 | 0 | 0.1625 | 0.965 | 0 | 0.1889 | 0.997 | ||
LSE | 0.0635 | −0.0167 | 0.0001 | ||||||||
MLE | 0.8058 | 0.0058 | 0.0060 | 0.6519 | 0.9596 | 0.956 | 0.6033 | 1.0083 | 0.993 | ||
LSE | 0.8101 | 0.0101 | 0.0026 | ||||||||
MLE | 1.2360 | 0.0360 | 0.0161 | 0.9859 | 1.4861 | 0.915 | 0.9068 | 1.5652 | 0.971 | ||
LSE | 1.2551 | 0.0551 | 0.0014 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Z.; Gui, W. Statistical Analysis of the Lifetime Distribution with Bathtub-Shaped Hazard Function under Lagged-Effect Step-Stress Model. Mathematics 2022, 10, 674. https://doi.org/10.3390/math10050674
Zhang Z, Gui W. Statistical Analysis of the Lifetime Distribution with Bathtub-Shaped Hazard Function under Lagged-Effect Step-Stress Model. Mathematics. 2022; 10(5):674. https://doi.org/10.3390/math10050674
Chicago/Turabian StyleZhang, Zihui, and Wenhao Gui. 2022. "Statistical Analysis of the Lifetime Distribution with Bathtub-Shaped Hazard Function under Lagged-Effect Step-Stress Model" Mathematics 10, no. 5: 674. https://doi.org/10.3390/math10050674
APA StyleZhang, Z., & Gui, W. (2022). Statistical Analysis of the Lifetime Distribution with Bathtub-Shaped Hazard Function under Lagged-Effect Step-Stress Model. Mathematics, 10(5), 674. https://doi.org/10.3390/math10050674