Highly Dispersive Optical Soliton Perturbation, with Maximum Intensity, for the Complex Ginzburg–Landau Equation by Semi-Inverse Variation
Abstract
:1. Introduction
Governing Model
2. Mathematical Start-Up
3. Application of SVP
3.1. Kerr Law
3.2. Parabolic Law
3.3. Polynomial Law
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Alqahtani, R.T.; Babatin, M.M.; Biswas, A. Bright optical solitons for Lakshmanan–Porsezian–Daniel model by semi–inverse variational principle. Optik 2018, 154, 109–114. [Google Scholar] [CrossRef]
- Biswas, A.; Milovic, D.; Kumar, S.; Yildirim, A. Perturbation of shallow water waves by semi–inverse variational principle. Indian J. Phys. 2013, 87, 567–569. [Google Scholar] [CrossRef]
- Biswas, A.; Alqahtani, R.T. Optical soliton perturbation with complex Ginzburg–Landau equation by semi–inverse variational principle. Optik 2017, 147, 77–81. [Google Scholar] [CrossRef]
- Biswas, A.; Alqahtani, R.T. Chirp–free bright optical solitons for perturbed Gerdjikov–Ivanov equation by semi–inverse variational principle. Optik 2017, 147, 72–76. [Google Scholar] [CrossRef]
- Biswas, A.; Asma, M.; Guggilla, P.; Mullick, L.; Moraru, L.; Ekici, M.; Alzahrani, A.K.; Belic, M.R. Optical soliton perturbation with Kudryashov’s equation by semi–inverse variational principle. Phys. Lett. A 2020, 384, 126830. [Google Scholar] [CrossRef]
- Biswas, A.; Ekici, M.; Dakova, A.; Khan, S.; Moshokoa, S.P.; Alshehri, H.M.; Belic, M.R. Highly dispersive optical soliton perturbation with Kudryashov’s sextic–power law nonlinear refractive index by semi–inverse variation. Results Phys. 2021, 27, 104539. [Google Scholar] [CrossRef]
- Biswas, A.; Edoki, J.; Guggilla, P.; Khan, S.; Alzahrani, A.K.; Belic, M.R. Cubic–quartic optical soliton perturbation with Lakshmanan–Porsezian–Daniel model by semi–inverse variational principle. Ukr. J. Phys. Opt. 2021, 22, 122–127. [Google Scholar] [CrossRef]
- Biswas, A.; Dakova, A.; Khan, S.; Ekici, M.; Moraru, L.; Belic, M.R. Cubic–quartic optical soliton perturbation with Fokas–Lenells equation by semi–inverse variation. Semicond. Phys. Quantum Electron. Optoelectron. 2021, 24, 431–435. [Google Scholar] [CrossRef]
- Collins, T.; Kara, A.H.; Bhrawy, A.H.; Triki, H.; Biswas, A. Dynamics of shallow water waves with logarithmic nonlinearity. Rom. Rep. Phys. 2016, 68, 943–961. [Google Scholar]
- Girgis, L.; Biswas, A. A study of solitary waves by He’s variational principle. Wave Random Complex. 2011, 21, 96–104. [Google Scholar] [CrossRef]
- He, J.H. Semi-inverse method and generalized variational principles with multi-variables in elasticity. Appl. Math. Mech. 2000, 21, 797–808. [Google Scholar]
- He, J.H. Variational principle and periodic solution of the Kundu–Mukherjee–Naskar equation. Results Phys. 2020, 17, 103031. [Google Scholar] [CrossRef]
- Kheir, H.; Jabbari, A.; Yildirim, A.; Alomari, A.K. He’s semi–inverse method for soliton solutions of Boussinesq system. World J. Model. Simul. 2013, 9, 3–13. [Google Scholar]
- Kohl, R.; Milovic, D.; Zerrad, E.; Biswas, A. Optical solitons by He’s variational principle in a non–Kerr law media. J. Infrared Millim. Terahertz Waves 2009, 30, 526–537. [Google Scholar] [CrossRef]
- Kohl, R.W.; Biswas, A.; Ekici, M.; Zhou, Q.; Khan, S.; Alshomrani, A.S.; Belic, M.R. Highly dispersive optical soliton perturbation with cubic–quintic–septic refractive index by semi–inverse variational principle. Optik 2019, 199, 163322. [Google Scholar] [CrossRef]
- Kohl, R.W.; Biswas, A.; Ekici, M.; Zhou, Q.; Khan, S.; Alshomrani, A.S.; Belic, M.R. Sequel to highly dispersive optical soliton perturbation with cubic–quintic–septic refractive index by semi–inverse variational principle. Optik 2020, 203, 163451. [Google Scholar] [CrossRef]
- Li, X.W.; Li, Y.; He, J.H. On the semi–inverse method and variational principle. Therm. Sci. 2013, 17, 1565–1568. [Google Scholar] [CrossRef]
- Liu, H.M. The variational principle for Yang–Mills equation by semi–inverse method. Facta Univ. Ser. Mech. Autom. Control Robot. 2004, 4, 169–171. [Google Scholar]
- Liu, W.Y.; Yu, Y.J.; Chen, L.D. Variational principles for Ginzburg–Landau equation by He’s semi–inverse method. Chaos Solit. Fractals 2007, 33, 1801–1803. [Google Scholar] [CrossRef]
- Ozis, T.; Yildirim, A. Application of He’s semi–inverse method to the nonlinear Schrodinger equation. Comput. Math. Appl. 2007, 54, 1039–1042. [Google Scholar] [CrossRef] [Green Version]
- Sassaman, R.; Heidari, A.; Biswas, A. Topological and non–topological solitons of nonlinear Klein–Gordon equations by He’s semi–inverse variational porinciple. J. Franklin Inst. 2010, 347, 1148–1157. [Google Scholar] [CrossRef]
- Singh, S.S. Bright and dark 1–soliton solutions to perturbed Schrodinger–Hirota equation with power law nonlinearity via semi–inverse variation method and ansatz method. Int. J. Phys. Res. 2017, 5, 39–42. [Google Scholar] [CrossRef]
- Tao, Z.L. Solving the breaking soliton equation by He’s variational method. Comput. Math. Appl. 2009, 58, 2395–2397. [Google Scholar] [CrossRef]
- Yan, W.; Liu, Q.; Zhu, C.M.; Zhao, Y.; Shi, Y. Semi–inverse method to the Klein–Gordon equation with quadratic nonlinearity. Appl. Comput. Electromagn. Soc. J. 2018, 33, 842–846. [Google Scholar]
- Zayed, E.M.E.; Gepreel, K.A.; El–Horbaty, M.; Biswas, A.; Yildirim, Y.; Alshehri, H.M. Highly dispersive optical solitons with complex Ginzburg–Landau equation having six nonlinear forms. Mathematics 2021, 9, 3270. [Google Scholar] [CrossRef]
- Zhang, J.; Yu, J.Y.; Pan, N. Variational principles for nonlinear fiber optics. Chaos Solit. Fractals 2005, 24, 309–311. [Google Scholar] [CrossRef]
- Abdel–Gawad, H.I. Chirped, breathers, diamond and W-shaped optical waves propagation in nonself–phase modulation medium. Biswas–Arshed equation. Int. J. Mod. Phys. B 2017, 35, 2150097. [Google Scholar] [CrossRef]
- Abdel–Gawad, H.I. A generalized Kundu–Eckhaus equation with an extra–dispersion: Pulses configuration. Opt. Quantum Electron. 2021, 53, 705. [Google Scholar] [CrossRef]
- Abdel–Gawad, H.I. Study of modulation instability and geometric structures of multisolitons in a medium with high dispersivity and nonlinearity. Pramana 2021, 95, 146. [Google Scholar] [CrossRef]
- Tantawy, M.; Abdel–Gawad, H.I. On multi–geometric structures optical waves propagation in self–phase modulation medium: Sasa–Satsuma equation. Eur. Phys. J. Plus 2020, 135, 928. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Biswas, A.; Berkemeyer, T.; Khan, S.; Moraru, L.; Yıldırım, Y.; Alshehri, H.M. Highly Dispersive Optical Soliton Perturbation, with Maximum Intensity, for the Complex Ginzburg–Landau Equation by Semi-Inverse Variation. Mathematics 2022, 10, 987. https://doi.org/10.3390/math10060987
Biswas A, Berkemeyer T, Khan S, Moraru L, Yıldırım Y, Alshehri HM. Highly Dispersive Optical Soliton Perturbation, with Maximum Intensity, for the Complex Ginzburg–Landau Equation by Semi-Inverse Variation. Mathematics. 2022; 10(6):987. https://doi.org/10.3390/math10060987
Chicago/Turabian StyleBiswas, Anjan, Trevor Berkemeyer, Salam Khan, Luminita Moraru, Yakup Yıldırım, and Hashim M. Alshehri. 2022. "Highly Dispersive Optical Soliton Perturbation, with Maximum Intensity, for the Complex Ginzburg–Landau Equation by Semi-Inverse Variation" Mathematics 10, no. 6: 987. https://doi.org/10.3390/math10060987
APA StyleBiswas, A., Berkemeyer, T., Khan, S., Moraru, L., Yıldırım, Y., & Alshehri, H. M. (2022). Highly Dispersive Optical Soliton Perturbation, with Maximum Intensity, for the Complex Ginzburg–Landau Equation by Semi-Inverse Variation. Mathematics, 10(6), 987. https://doi.org/10.3390/math10060987