T-Spherical Fuzzy Bonferroni Mean Operators and Their Application in Multiple Attribute Decision Making
Abstract
:1. Introduction
2. Preliminaries
3. T-Spherical Fuzzy Interaction Bonferroni Mean Operator
4. T-Spherical Fuzzy Dombi Bonferroni Mean Operator
5. T-Spherical Fuzzy Entropy and Cross-Entropy Measure
6. T-Spherical Fuzzy Decision Methods Based on Bonferroni Mean Operator
Algorithm 1 T-spherical fuzzy decision making method based on Bonferroni mean operator |
Step 1. T-spherical fuzzy evaluation values are given by decision makers to form T-spherical fuzzy decision matrix . Step 2. Calculate the weights of attributes using Equation (20) for completely unknown situations.
For partly known attribute situation, Model (M-2) is used to calculate the attribute weights. Step 3. Aggregate the T-spherical fuzzy evaluation values into collective ones using the TSFWIBM operator, the TSFWIGBM operator, the TSFWGDBM operator or the TSFWDBM operator as follows
Step 4. Rank according to Definition 4 and select the optimal alternative. |
7. Numerical Example
8. Advantages and Comparison Analysis
9. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ashraf, S.; Abdullah, S.; Aslam, M.; Qiyas, M.; Kutbi, M.A. Spherical fuzzy sets and its representation of spherical fuzzy t-norms and t-conorms. J. Intell. Fuzzy Syst. 2019, 36, 6089–6102. [Google Scholar] [CrossRef]
- Atanassov, K.T. Intuitionistic fuzzy sets. Fuzzy Sets Syst. 1986, 20, 87–96. [Google Scholar] [CrossRef]
- Paul, A.E.; Johnson, M.A. Similarity-Distance Decision-Making Technique and its Applications via Intuitionistic Fuzzy Pairs. J. Comput. Cogn. Eng. 2022; in press. [Google Scholar]
- Mehmet, Ü.; Murat, O.; Ezgi, T. Cosine and Cotangent Similarity Measures Based on Choquet Integral for Spherical Fuzzy Sets and Applications to Pattern Recognition. J. Comput. Cogn. Eng. 2022, 1, 1–11. [Google Scholar]
- Khan, M.R.; Ullah, K.; Pamucar, D.; Bari, M. Performance Measure Using a Multi-Attribute Decision Making Approach Based on Complex T-Spherical Fuzzy Power Aggregation Operators. J. Comput. Cogn. Eng. 2022; in press. [Google Scholar]
- Ashraf, S.; Abdullah, S. Spherical aggregation operators and their application in multiattribute group decision-making. Int. J. Intell. Syst. 2019, 34, 493–523. [Google Scholar] [CrossRef]
- Donyatalab, Y.; Farokhizadeh, E.; Garmroodi, S.D.S.; Shishavan, S.A.S. Harmonic mean aggregation operators in spherical fuzzy environment and their group decision making applications. J. Mult.-Valued Log. Soft Comput. 2019, 33, 565–592. [Google Scholar]
- Mahmood, T.; Ullah, K.; Khan, Q.; Jan, N. An approach toward decision-making and medical diagnosis problems using the concept of spherical fuzzy sets. Int. J. Intell. Syst. 2019, 31, 7041–7053. [Google Scholar] [CrossRef]
- Zeng, S.Z.; Munir, M.; Mahmood, T.; Naeem, M. Some T-spherical fuzzy Einstein interactive aggregation operators and their application to selection of photovoltaic cells. Math. Probl. Eng. 2020, 2020, 1904362. [Google Scholar] [CrossRef]
- Zeng, S.Z.; Garg, H.; Munir, M.; Mahmood, T.; Hussain, A. A multi-attribute decision making process with immediate probabilistic interactive averaging aggregation operators of T-spherical fuzzy sets and its application in the selection of solar cells. Energies 2019, 12, 4436. [Google Scholar] [CrossRef] [Green Version]
- Al-Quran, A. A new multi attribute decision making method based on the T-Spherical hesitant fuzzy sets. IEEE Access 2021, 9, 156200–156210. [Google Scholar] [CrossRef]
- Jan, N.; Mahmood, T.; Zedam, L.; Abdullah, L.; Ullah, K. Analysis of double domination using the concept of spherical fuzzy information with application. J. Ambient. Intell. Humaniz. Comput. 2022; in press. [Google Scholar] [CrossRef]
- Munir, M.; Kalsoom, H.; Ullah, K.; Mahmood, T.; Chu, Y.M. T-spherical fuzzy Einstein hybrid aggregation operators and their applications in multi-attribute decision making problems. Symmetry 2020, 12, 365. [Google Scholar] [CrossRef] [Green Version]
- Ju, Y.B.; Liang, Y.Y.; Luo, C.; Dong, P.W.; Gonzalez, E.D.R.S.; Wang, A.H. T-spherical fuzzy TODIM method for multi-criteria group decision-making problem with incomplete weight information. Soft Comput. 2021, 25, 2981–3001. [Google Scholar] [CrossRef]
- Xian, S.D.; Cheng, Y.; Chen, K.Y. A novel weighted spatial T-spherical fuzzy C-means algorithms with bias correction for image segmentation. Int. J. Intell. Syst. 2022, 37, 1239–1272. [Google Scholar] [CrossRef]
- Zedam, L.; Jan, N.; Rak, E.; Mahmood, T.; Ullah, K. An approach towards decision-making and shortest path problems based on T-spherical fuzzy information. Int. J. Fuzzy Syst. 2020, 22, 1521–1534. [Google Scholar] [CrossRef]
- Guleria, A.; Bajaj, R.K. T-spherical fuzzy graphs: Operations and applications in various selection processes. Arab. J. Sci. Eng. 2020, 45, 2177–2193. [Google Scholar] [CrossRef]
- Mahmood, T.; Warraich, M.S.; Ali, Z.; Pamucar, D. Generalized MULTIMOORA method and Dombi prioritized weighted aggregation operators based on T-spherical fuzzy sets and their applications. Int. J. Intell. Syst. 2021, 36, 4659–4692. [Google Scholar] [CrossRef]
- Munir, M.; Mahmood, T.; Hussain, A. Algorithm for T-spherical fuzzy MADM based on associated immediate probability interactive geometric aggregation operators. Artif. Intell. Rev. 2021, 54, 6033–6061. [Google Scholar] [CrossRef]
- Liu, P.D.; Zhu, B.Y.; Wang, P. A multi-attribute decision-making approach based on spherical fuzzy sets for Yunnan Baiyao’s R&D project selection problem. Int. J. Fuzzy Syst. 2019, 21, 2168–2191. [Google Scholar]
- Wang, J.C.; Chen, T.Y. A T-spherical fuzzy ELECTRE approach for multiple criteria assessment problem from a comparative perspective of score functions. J. Intell. Fuzzy Syst. 2021, 41, 3751–3770. [Google Scholar] [CrossRef]
- Ullah, K.; Garg, H.; Mahmood, T.; Jan, N.; Ali, Z. Correlation coefficients for T-spherical fuzzy sets and their applications in clustering and multi-attribute decision making. Soft Comput. 2020, 24, 1647–1659. [Google Scholar] [CrossRef]
- Ullah, K.; Mahmood, T.; Jan, N. Similarity measures for T-spherical fuzzy sets with applications in pattern recognition. Symmetry 2018, 10, 193. [Google Scholar] [CrossRef] [Green Version]
- Khan, Q.; Gwak, J.; Shahzad, M.; Alam, M.K. A novel approached based on T-spherical fuzzy Schweizer-Sklar power Heronian mean operator for evaluating water reuse applications under uncertainty. Sustainability 2021, 13, 7108. [Google Scholar] [CrossRef]
- Garg, H.; Munir, M.; Ullah, K.; Mahmood, T.; Jan, N. Algorithm for T-spherical fuzzy multi-attribute decision making based on improved interactive aggregation operators. Symmetry 2018, 10, 670. [Google Scholar] [CrossRef] [Green Version]
- Mahmood, T.; Ahmmad, J.; Ali, Z.; Pamucar, D.; Marinkovic, D. Interval valued T-spherical fuzzy soft average aggregation operators and their applications in multiple-criteria decision making. Symmetry 2021, 13, 829. [Google Scholar] [CrossRef]
- Garg, H.; Ullah, K.; Mahmood, T.; Hassan, N.; Jan, N. T-spherical fuzzy power aggregation operators and their applications in multi-attribute decision making. J. Ambient. Intell. Humaniz. Comput. 2021, 12, 9067–9080. [Google Scholar] [CrossRef]
- Ullah, K.; Mahmood, T.; Garg, H. Evaluation of the performance of search and rescue robots using T-spherical fuzzy Hamacher aggregation operators. Int. J. Fuzzy Syst. 2020, 22, 570–582. [Google Scholar] [CrossRef]
- Liu, P.D.; Ali, Z.; Mahmood, T. Novel complex T-spherical fuzzy 2-Tuple linguistic muirhead mean aggregation operators and their application to multi-aAttribute decision-making. Int. J. Intell. Syst. 2021, 14, 295–331. [Google Scholar] [CrossRef]
- Liu, P.D.; Wang, D.Y. An extended taxonomy method based on normal T-Spherical fuzzy numbers for multiple-attribute decision-making. Int. J. Fuzzy Syst. 2022, 24, 73–90. [Google Scholar] [CrossRef]
- Ozlu, S.; Karaaslan, F. Correlation coefficient of T-spherical type-2 hesitant fuzzy sets and their applications in clustering analysis. J. Ambient. Intell. Humaniz. Comput. 2022, 13, 329–357. [Google Scholar] [CrossRef]
- Chen, Y.J.; Munir, M.; Mahmood, T.; Hussain, A.; Zeng, S.Z. Some generalized T-spherical and group-generalized fuzzy geometric aggregation operators with application in MADM problems. J. Math. 2021, 2021, 5578797. [Google Scholar] [CrossRef]
- Ali, Z.; Mahmood, T.; Yang, M.S. Complex T-Spherical fuzzy aggregation operators with application to multi-attribute decision making. Symmetry 2020, 12, 1311. [Google Scholar] [CrossRef]
- Karaaslan, F.; Dawood, M.A.D. Complex T-spherical fuzzy Dombi aggregation operators and their applications in multiple-criteria decision-making. Complex Intell. Syst. 2021, 7, 2711–2734. [Google Scholar] [CrossRef]
- Akram, M.; Khan, A.; Karaaslan, F. Complex spherical Dombi fuzzy aggregation operators for decision-making. J. Mult.-Valued Log. Soft Comput. 2021, 37, 503–531. [Google Scholar]
- Ibrahim, H.Z.; Al-Shami, T.M.; Elbarbary, O.G. (3,2)-Fuzzy Sets and Their Applications to Topology and Optimal Choices. Comput. Intell. Neurosci. 2021, 2021, 1272266. [Google Scholar] [CrossRef]
- Bonferroni, C. Sulle medie multiple dipotenze. Boll. dell’unione Mat. Ital. 1950, 5, 267–270. [Google Scholar]
- Yager, R.R. On generalized Bonferroni mean operators for multi-criteria aggregation. Int. J. Approx. Reason. 2009, 50, 1279–1286. [Google Scholar] [CrossRef] [Green Version]
- Xia, M.M.; Xu, Z.S.; Zhu, B. Geometric Bonferroni means with their application in multi-criteria decision making. Knowl.-Based Syst. 2013, 40, 88–100. [Google Scholar] [CrossRef]
- Li, D.Q.; Zeng, W.Y.; Li, J.H. Geometric Bonferroni mean operators. Int. J. Intell. Syst. 2016, 31, 1181–1197. [Google Scholar] [CrossRef]
- Zhu, B.; Xu, Z.S. Hesitant fuzzy Bonferroni means for multi-criteria decision making. J. Oper. Res. Soc. 2013, 64, 1831–1840. [Google Scholar] [CrossRef]
- Zhu, B.; Xu, Z.S.; Xia, M.M. Hesitant fuzzy geometric Bonferroni means. Inform. Sci. 2012, 205, 72–85. [Google Scholar] [CrossRef]
- He, Y.D.; He, Z.; Jin, C.; Chen, H.Y. Intuitionistic fuzzy power geometric Bonferroni means and their application to multiple attribute group decision making. Int. J. Uncertain. Fuzziness Knowl.-Based Syst. 2015, 23, 285–315. [Google Scholar] [CrossRef]
- Park, J.H.; Kim, J.Y.; Kwun, Y.C. Intuitionistic fuzzy optimized weighted geometric Bonferroni means and their applications in group decision making. Fund Inform. 2016, 144, 363–381. [Google Scholar] [CrossRef]
- Wei, G.W.; Zhao, X.F.; Lin, R.; Wang, H.J. Uncertain linguistic Bonferroni mean operators and their application to multiple attribute decision making. Appl. Math. Model. 2013, 37, 5277–5285. [Google Scholar] [CrossRef]
- Liu, Z.M.; Liu, P.D. Intuitionistic uncertain linguistic partitioned Bonferroni means and their application to multiple attribute decision-making. Int. J. Syst. Sci. 2017, 48, 1092–1105. [Google Scholar] [CrossRef]
- Chen, Z.S.; Chin, K.S.; Tsui, K.L. Constructing the geometric Bonferroni mean from the generalized Bonferroni mean with several extensions to linguistic 2-tuples for decision-making. Appl. Soft Comput. 2019, 78, 595–613. [Google Scholar] [CrossRef]
- Yang, W.; Wang, C.J.; Liu, Y.; Sun, Y. Hesitant Pythagorean fuzzy interaction aggregation operators and their application in multiple attribute decision-making. Complex Intell. Syst. 2020, 5, 199–216. [Google Scholar] [CrossRef] [Green Version]
- Yang, W.; Shi, J.R.; Liu, Y.; Pang, Y.F.; Lin, R.Y. Pythagorean fuzzy interaction partitioned Bonferroni mean operators and their application in multiple-attribute decision-making. Complexity 2018, 2018, 3606245. [Google Scholar] [CrossRef]
- Yang, W.; Pang, Y.F. New q-rung orthopair fuzzy Bonferroni mean Dombi operators and their application in multiple attribute decision making. IEEE Access 2020, 8, 50587–50610. [Google Scholar] [CrossRef]
- Liu, Z.M.; Liu, P.D. Normal intuitionistic fuzzy Bonferroni mean operators and their applications to multiple attribute group decision making. J. Intell. Fuzzy Syst. 2015, 29, 2205–2216. [Google Scholar] [CrossRef]
- Mesiarova-Zemankova, A.; Kelly, S.; Ahmad, K. Bonferroni mean with weighted interaction. IEEE Trans. Fuzzy Syst. 2018, 26, 3085–3096. [Google Scholar] [CrossRef]
- Liang, D.C.; Darko, A.P.; Xu, Z.S.; Quan, W. The linear assignment method for multicriteria group decision making based on interval-valued Pythagorean fuzzy Bonferroni mean. Int. J. Intell. Syst. 2018, 33, 2101–2138. [Google Scholar] [CrossRef]
- Ates, F.; Akay, D. Some picture fuzzy Bonferroni mean operators with their application to multicriteria decision making. Int. J. Intell. Syst. 2020, 35, 625–649. [Google Scholar] [CrossRef]
- Mahmood, T.; Ahsen, M.; Ali, Z. Multi-attribute group decision-making based on Bonferroni mean operators for picture hesitant fuzzy numbers. Soft Comput. 2021, 25, 13315–13351. [Google Scholar] [CrossRef]
- Dombi, J. A general class of fuzzy operators, the demorgan class of fuzzy operators and fuzziness measures induced by fuzzy operators. Fuzzy Sets Syst. 1982, 8, 149–163. [Google Scholar] [CrossRef]
- Liu, P.D.; Khan, Q.; Mahmood, T.; Khan, R.A.; Khan, H.U. Some improved pythagorean fuzzy Dombi power aggregation operators with application in multiple-attribute decision making. J. Intell. Fuzzy Syst. 2021, 40, 9237–9257. [Google Scholar] [CrossRef]
- Jana, C.; Pal, M. Multi-criteria decision making process based on some single-valued neutrosophic Dombi power aggregation operators. Soft Comput. 2021, 25, 5055–5072. [Google Scholar] [CrossRef]
- Wu, L.P.; Wei, G.W.; Wei, Y. Some interval-valued intuitionistic fuzzy Dombi Hamy mean operators and their application for evaluating the elderly tourism service quality in tourism destination. Mathematics 2018, 6, 294. [Google Scholar] [CrossRef] [Green Version]
- Jana, C.; Senapati, T.; Pal, M. Pythagorean fuzzy Dombi aggregation operators and its applications in multiple attribute decision-making. Int. J. Intell. Syst. 2019, 34, 2019–2038. [Google Scholar] [CrossRef]
- Shit, C.; Ghorai, G. Multiple attribute decision-making based on different types of Dombi aggregation operators under Fermatean fuzzy information. Soft Comput. 2021, 25, 13869–13880. [Google Scholar] [CrossRef]
- Kurama, O. A new similarity-based classifier with Dombi aggregative operators. Pattern Recognit. Lett. 2021, 151, 229–235. [Google Scholar] [CrossRef]
- Jana, C.; Senapatia, T.; Pal, M.; Yager, R.R. Picture fuzzy Dombi aggregation operators: Application to MADM process. Appl. Soft Comput. 2019, 74, 99–109. [Google Scholar] [CrossRef]
- Gulfam, M.; Mahmood, M.K.; Smarandache, F.; Ali, S. New Dombi aggregation operators on bipolar neutrosophic set with application in multi-attribute decision-making problems. J. Intell. Fuzzy Syst. 2021, 40, 5043–5060. [Google Scholar] [CrossRef]
- Ayub, S.; Abdullah, S.; Ghani, F.; Qiyas, M.; Khan, M.Y. Cubic fuzzy Heronian mean Dombi aggregation operators and their application on multi-attribute decision-making problem. Soft Comput. 2021, 25, 4175–4189. [Google Scholar] [CrossRef]
- Akram, M.; Khan, A.; Saeid, A.B. Complex Pythagorean Dombi fuzzy operators using aggregation operators and their decision-making. Expert Syst. 2021, 38, e12626. [Google Scholar] [CrossRef]
- Ali, Z.; Mahmood, T. Some Dombi aggregation operators based on complex q-rung orthopair fuzzy sets and their application to multi-attribute decision making. Comput. Appl. Math. 2022, 41, 18. [Google Scholar] [CrossRef]
- Khan, Q.; Mahmood, T.; Ullah, K. Applications of improved spherical fuzzy Dombi aggregation operators in decision support system. Soft Comput. 2021, 25, 9097–9119. [Google Scholar] [CrossRef]
- Saha, A.; Dutta, D.; Kar, S. Some new hybrid hesitant fuzzy weighted aggregation operators based on Archimedean and Dombi operations for multi-attribute decision making. Neural Comput. Appl. 2021, 33, 8753–8776. [Google Scholar] [CrossRef]
- Kamaci, H.; Garg, H.; Petchimuthu, S. Bipolar trapezoidal neutrosophic sets and their Dombi operators with applications in multicriteria decision making. Soft Comput. 2021, 25, 8417–8440. [Google Scholar] [CrossRef]
- He, X.R. Typhoon disaster assessment based on Dombi hesitant fuzzy information aggregation operators. Nat. Hazards 2018, 90, 1153–1175. [Google Scholar] [CrossRef]
- He, X.R. Group decision making based on Dombi operators and its application to personnel evaluation. Int. J. Intell. Syst. 2019, 34, 1718–1731. [Google Scholar] [CrossRef]
- Fan, J.P.; Jia, X.F.; Wu, M.Q. Green supplier selection based on Dombi prioritized Bonferroni mean operator with single-valued triangular neutrosophic sets. Int. J. Comput. Intell. Syst. 2021, 12, 1091–1101. [Google Scholar] [CrossRef] [Green Version]
- He, Y.D.; He, Z. Extensions of Atanassov’s intuitionistic fuzzy interaction Bonferroni means and their application to multiple attribute decision making. IEEE Trans. Fuzzy Syst. 2016, 24, 558–573. [Google Scholar] [CrossRef]
0.6490 | 0.9090 | 0.8110 | 0.8720 | 0.9650 | |
0.7501 | 0.4610 | 0.7571 | 0.8481 | 0.8725 | |
0.8111 | 0.7211 | 0.4800 | 0.8671 | 0.9840 | |
0.9094 | 0.8512 | 0.8720 | 0.8670 | 0.2630 | |
0.7200 | 0.9650 | 0.9460 | 0.6300 | 0.7500 |
Ranking Results | Optimal Alternative | ||||||
---|---|---|---|---|---|---|---|
0.5026 | 0.5069 | 0.5092 | 0.5307 | 0.5024 | |||
0.4982 | 0.4986 | 0.5062 | 0.5342 | 0.4956 | |||
0.4963 | 0.4955 | 0.5042 | 0.5258 | 0.4904 | |||
0.4952 | 0.4935 | 0.5037 | 0.5298 | 0.4894 | |||
0.5027 | 0.5073 | 0.5089 | 0.5086 | 0.5023 |
Ranking Results | Optimal Alternative | ||||||
---|---|---|---|---|---|---|---|
0.5028 | 0.5763 | 0.5861 | 0.6044 | 0.5611 | |||
0.5022 | 0.5314 | 0.5418 | 0.5407 | 0.5241 | |||
0.5027 | 0.5068 | 0.5116 | 0.5245 | 0.5035 | |||
0.5023 | 0.5062 | 0.5115 | 0.5270 | 0.5036 | |||
0.5025 | 0.5060 | 0.5111 | 0.5198 | 0.5037 |
Ranking Results | Optimal Alternative | |||||||
---|---|---|---|---|---|---|---|---|
0.3565 | 0.2658 | 0.3474 | 0.3512 | 0.3493 | ||||
0.3360 | 0.2380 | 0.3263 | 0.3294 | 0.3298 | ||||
0.3491 | 0.2516 | 0.3397 | 0.3428 | 0.3417 | ||||
0.3565 | 0.2658 | 0.3474 | 0.3512 | 0.3493 | ||||
0.4320 | 0.3671 | 0.4368 | 0.4381 | 0.4253 | ||||
0.4135 | 0.3916 | 0.4574 | 0.4527 | 0.4402 | ||||
0.4424 | 0.4131 | 0.4690 | 0.4649 | 0.4542 | ||||
0.4399 | 0.4108 | 0.4651 | 0.4600 | 0.4522 | ||||
0.4691 | 0.4496 | 0.4958 | 0.4865 | 0.4850 | ||||
0.4618 | 0.4465 | 0.4936 | 0.4837 | 0.4831 | ||||
0.4737 | 0.4609 | 0.5010 | 0.4914 | 0.4860 | ||||
0.4703 | 0.4555 | 0.4969 | 0.4879 | 0.4819 | ||||
0.4833 | 0.4741 | 0.5162 | 0.5009 | 0.5048 | ||||
0.4795 | 0.4732 | 0.5139 | 0.4989 | 0.5039 | ||||
0.4867 | 0.4828 | 0.5209 | 0.5049 | 0.5052 | ||||
0.4842 | 0.4787 | 0.5177 | 0.5019 | 0.5028 | ||||
0.4925 | 0.4902 | 0.5295 | 0.5095 | 0.5179 | ||||
0.4931 | 0.4909 | 0.5300 | 0.5099 | 0.5184 | ||||
0.4928 | 0.4905 | 0.5298 | 0.5097 | 0.5181 | ||||
0.4925 | 0.4902 | 0.5295 | 0.5095 | 0.5179 |
Ranking Results | Optimal Alternative | |||||||
---|---|---|---|---|---|---|---|---|
0.6267 | 0.7062 | 0.7157 | 0.7110 | 0.6439 | ||||
0.6435 | 0.7233 | 0.7282 | 0.7310 | 0.6611 | ||||
0.6117 | 0.6903 | 0.7024 | 0.6944 | 0.6290 | ||||
0.6261 | 0.7062 | 0.7157 | 0.7110 | 0.6439 | ||||
0.5400 | 0.5788 | 0.5983 | 0.5876 | 0.5434 | ||||
0.5456 | 0.5862 | 0.6002 | 0.5953 | 0.5491 | ||||
0.5364 | 0.5760 | 0.5961 | 0.5861 | 0.5422 | ||||
0.5400 | 0.5788 | 0.5983 | 0.5876 | 0.5434 | ||||
0.5159 | 0.5360 | 0.5570 | 0.5463 | 0.5149 | ||||
0.5190 | 0.5408 | 0.5580 | 0.5505 | 0.5177 | ||||
0.5132 | 0.5317 | 0.5550 | 0.5427 | 0.5123 | ||||
0.5159 | 0.5360 | 0.5570 | 0.5463 | 0.5149 | ||||
0.5043 | 0.5145 | 0.5354 | 0.5235 | 0.5013 | ||||
0.5065 | 0.5180 | 0.5360 | 0.5261 | 0.5031 | ||||
0.5024 | 0.5114 | 0.5340 | 0.5210 | 0.4996 | ||||
0.5043 | 0.5145 | 0.5354 | 0.5235 | 0.5013 | ||||
0.4973 | 0.5012 | 0.5221 | 0.5085 | 0.4928 | ||||
0.4990 | 0.5040 | 0.5226 | 0.5104 | 0.4941 | ||||
0.4958 | 0.4988 | 0.5210 | 0.5066 | 0.4915 | ||||
0.4973 | 0.5012 | 0.5221 | 0.5085 | 0.4928 |
TSFWA | TSFWGA | TSFIWA | TSFIGWA | ||
---|---|---|---|---|---|
Ranking Results | Optimal Alternative | ||||||
---|---|---|---|---|---|---|---|
TSFWA | 0.5220 | 0.5539 | 0.5656 | 0.6629 | 0.5298 | ||
TSFWGA | 0.4823 | 0.4915 | 0.4866 | 0.5174 | 0.4820 | ||
TSFIWA | 0.5154 | 0.5425 | 0.5501 | 0.6429 | 0.5169 | ||
TSFIGWA | 0.5129 | 0.5291 | 0.5484 | 0.6134 | 0.5150 |
v | Ranking Results | Compromise Solutions | ||||||
---|---|---|---|---|---|---|---|---|
0 | 1.0 | 1.0 | 0.4484 | 0.0 | 0.4484 | |||
0.2 | 1.0 | 0.8812 | 0.4181 | 0.0 | 0.5264 | |||
0.4 | 1.0 | 0.7633 | 0.3877 | 0.0 | 0.6045 | |||
0.6 | 1.0 | 0.6435 | 0.3574 | 0.0 | 0.6825 | |||
0.8 | 1.0 | 0.5247 | 0.3271 | 0.0 | 0.7606 | |||
1.0 | 1.0 | 0.4058 | 0.2968 | 0.0 | 0.8386 |
0.0 | −3.8964 | −0.9154 | −4.1311 | −3.4218 | |
−2.4244 | 0.0 | −1.5323 | −3.9547 | −2.2853 | |
−5.5283 | −4.3000 | 0.0 | −3.6430 | −2.6115 | |
−2.4980 | −3.1172 | −1.7797 | 0.0 | −1.3468 | |
−2.7504 | −4.4510 | −2.9578 | −4.4807 | 0.0 |
Methods | Information by TFS Fuzzy Values | Whether the Interrelationships Are Considered between Arguments | Whether a Parameter Existing to Manipulate the Results |
---|---|---|---|
TSFWA [7] | Yes | No | No |
TSFWGA | Yes | No | No |
TSFIWA [14] | Yes | No | No |
TSFIWGA [14] | Yes | No | No |
TSF-TOPSIS [9] | Yes | No | No |
TSF-VIKOR | Yes | No | No |
TSF-TODIM [14] | Yes | No | No |
Karaaslan and Dawood [34] | Yes | No | Yes |
Park et al. [44] | No | No | No |
Wei et al. [45] | No | Yes | No |
TSFWIBM | Yes | Yes | No |
TSFWIGBM | Yes | Yes | No |
TSFWDBM | Yes | Yes | Yes |
TSFWGDBM | Yes | Yes | Yes |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, W.; Pang, Y. T-Spherical Fuzzy Bonferroni Mean Operators and Their Application in Multiple Attribute Decision Making. Mathematics 2022, 10, 988. https://doi.org/10.3390/math10060988
Yang W, Pang Y. T-Spherical Fuzzy Bonferroni Mean Operators and Their Application in Multiple Attribute Decision Making. Mathematics. 2022; 10(6):988. https://doi.org/10.3390/math10060988
Chicago/Turabian StyleYang, Wei, and Yongfeng Pang. 2022. "T-Spherical Fuzzy Bonferroni Mean Operators and Their Application in Multiple Attribute Decision Making" Mathematics 10, no. 6: 988. https://doi.org/10.3390/math10060988
APA StyleYang, W., & Pang, Y. (2022). T-Spherical Fuzzy Bonferroni Mean Operators and Their Application in Multiple Attribute Decision Making. Mathematics, 10(6), 988. https://doi.org/10.3390/math10060988