Contribution of Cardiorespiratory Coupling to the Irregular Dynamics of the Human Cardiovascular System
Abstract
:1. Introduction
2. Materials and Methods
2.1. Mathematical Model
2.1.1. Central Pattern Generator of the Respiratory Rhythm
2.1.2. Mathematical Model of the Lungs
2.1.3. Control of Respiration
2.1.4. Model of the Cardiovascular System
2.2. Complexity Indices
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pool, R. Is it healthy to be chaotic? Science 1989, 243, 604–607. [Google Scholar] [CrossRef] [PubMed]
- Bunde, A.; Havlin, S.; Kantelhardt, J.W.; Penzel, T.; Peter, J.H.; Voigt, K. Correlated and uncorrelated regions in heart-rate fluctuations during sleep. Phys. Rev. Lett. 2000, 85, 3736–3739. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wessel, N.; Riedl, M.; Kurths, J. Is the normal heart rate “chaotic” due to respiration? Chaos 2009, 19, 028508. [Google Scholar] [CrossRef]
- Pavlov, A.N.; Janson, N.B.; Anishchenko, V.S.; Gridnev, V.I.; Dovgalevsky, P.Y. Diagnostic of cardio-vascular disease with help of largest Lyapunov exponent of RR-sequences. Chaos Solitons Fractals 2000, 11, 807–814. [Google Scholar] [CrossRef] [Green Version]
- Goldberger, A.L. Non-linear dynamics for clinicians: Chaos theory, fractals, and complexity at the bedside. Lancet 1996, 347, 1312–1314. [Google Scholar] [CrossRef]
- Valente, M.; Javorka, M.; Porta, A.; Bari, V.; Krohova, J.; Czippelova, B.; Turianikova, Z.; Nollo, G.; Faes, L. Univariate and multivariate conditional entropy measures for the characterization of short-term cardiovascular complexity under physiological stress. Physiol. Meas. 2018, 39, 014002. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Porta, A.; Bari, V.; Ranuzzi, G.; De Maria, B.; Baselli, G. Assessing multiscale complexity of short heart rate variability series through a model-based linear approach. Chaos 2017, 27, 093901. [Google Scholar] [CrossRef] [Green Version]
- Dimitriev, D.A.; Saperova, E.V.; Dimitriev, A.D. State Anxiety and Nonlinear Dynamics of Heart Rate Variability in Students. PLoS ONE 2016, 11, e0146131. [Google Scholar] [CrossRef] [Green Version]
- Shiogai, Y.; Stefanovska, A.; McClintock, P.V. Nonlinear dynamics of cardiovascular ageing. Phys. Rep. 2010, 488, 51–110. [Google Scholar] [CrossRef] [Green Version]
- Anishchenko, V.S.; Saparin, P.I.; Igosheva, N.B. Diagnostic of human being and mental condition on the basis of electrocardiogram analysis by methods of chaotic dynamics. Proc. SPIE 1993, 1981, 141–150. [Google Scholar] [CrossRef]
- Fagard, R.H.; Stolarz, K.; Kuznetsova, T.; Seidlerova, J.; Tikhonoff, V.; Grodzicki, T.; Nikitin, Y.; Filipovsky, J.; Peleska, J.; Casiglia, E.; et al. Sympathetic activity, assessed by power spectral analysis of heart rate variability, in white-coat, masked and sustained hypertension versus true normotension. J. Hypertens. 2007, 25, 2280–2285. [Google Scholar] [CrossRef] [PubMed]
- Dekker, J.M.; Crow, R.S.; Folsom, A.R.; Hannan, P.J.; Liao, D.; Swenne, C.A.; Schouten, E.G. Low heart rate variability in a 2-minute rhythm strip predicts risk of coronary heart disease and mortality from several causes: The ARIC Study. Atherosclerosis Risk In Communities. Circulation 2000, 102, 1239–1244. [Google Scholar] [CrossRef] [PubMed]
- Lerma, C.; Echeverría, J.C.; Infante, O.; Pérez-Grovas, H.; González-Gómez, H. Sign and magnitude scaling properties of heart rate variability in patients with end-stage renal failure: Are these properties useful to identify pathophysiological adaptations? Chaos 2017, 27, 093906. [Google Scholar] [CrossRef]
- Denton, T.A.; Diamond, G.A.; Helfant, R.H.; Khan, S.; Karagueuzian, H. Fascinating rhythm: A primer on chaos theory and its application to cardiology. Am. Heart J. 1990, 120 Pt 1, 1419–1440. [Google Scholar] [CrossRef]
- Ivanov, P.C.; Amaral, L.A.; Goldberger, A.L.; Havlin, S.; Rosenblum, M.G.; Struzik, Z.R.; Stanley, H.E. Multifractality in human heartbeat dynamics. Nature 1999, 399, 461–465. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wagner, C.D.; Persson, P.B. Chaos in the cardiovascular system: An update. Cardiovasc. Res. 1998, 40, 257–264. [Google Scholar] [CrossRef] [Green Version]
- Ringwood, J.V.; Malpas, S.C. Slow oscillations in blood pressure via a nonlinear feedback model. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2001, 280, R1105–R1115. [Google Scholar] [CrossRef] [Green Version]
- Burgess, D.E.; Hundley, J.C.; Li, S.G.; Randall, D.C.; Brown, D.R. First-order differential-delay equation for the baroreflex predicts the 0.4-Hz blood pressure rhythm in rats. Am. J. Physiol. 1997, 273, R1878–R1884. [Google Scholar] [CrossRef]
- Ernst, G. Heart-Rate Variability-More than Heart Beats? Front. Public Health 2017, 5, 240. [Google Scholar] [CrossRef] [PubMed]
- Karavaev, A.S.; Ishbulatov, Y.M.; Ponomarenko, V.I.; Bezruchko, B.P.; Kiselev, A.R.; Prokhorov, M.D. Autonomic control is a source of dynamical chaos in the cardiovascular system. Chaos 2019, 29, 121101. [Google Scholar] [CrossRef] [PubMed]
- Bittihn, P.; Berg, S.; Parlitz, U.; Luther, S. Emergent dynamics of spatio-temporal chaos in a heterogeneous excitable medium. Chaos 2017, 27, 093931. [Google Scholar] [CrossRef]
- Krogh-Madsen, T.; Kold Taylor, L.; Skriver, A.D.; Schaffer, P.; Guevara, M.R. Regularity of beating of small clusters of embryonic chick ventricular heart-cells: Experiment vs. stochastic single-channel population model. Chaos 2017, 27, 093929. [Google Scholar] [CrossRef] [PubMed]
- Gomes, J.M.; Dos Santos, R.W.; Cherry, E.M. Alternans promotion in cardiac electrophysiology models by delay differential equations. Chaos 2017, 27, 093915. [Google Scholar] [CrossRef]
- Guevara, M.R.; Glass, L.; Shrier, A. Phase locking, period-doubling bifurcations, and irregular dynamics in periodically stimulated cardiac cells. Science 1981, 214, 1350–1353. [Google Scholar] [CrossRef] [PubMed]
- Togo, F.; Yamamoto, Y. Decreased fractal component of human heart rate variability during non-REM sleep. Am. J. Physiol. Heart Circ. Physiol. 2001, 280, H17–H21. [Google Scholar] [CrossRef]
- Schäfer, C.; Rosenblum, M.G.; Abel, H.-H.; Kurths, J. Synchronization in the Human Cardiorespiratory System. Phys. Rev. E 1999, 60, 857–870. [Google Scholar] [CrossRef] [Green Version]
- Schäfer, C.; Rosenblum, M.G.; Kurths, J.; Abel, H.-H. Heartbeat Synchronized with Ventilation. Nature 1998, 392, 239–240. [Google Scholar] [CrossRef]
- Yunus, A.; McClintock, P.; Stefanovska, A. Race-specific differences in the phase coherence between blood flow and oxygenation: A simultaneous NIRS, white light spectroscopy and LDF study. J. Biophotonics 2020, 13, e201960131. [Google Scholar] [CrossRef] [Green Version]
- Prokhorov, M.D.; Ponomarenko, V.I.; Gridnev, V.I.; Bodrov, M.B.; Bespyatov, A.B. Synchronization between main rhythmic processes in the human cardiovascular system. Phys. Rev. E 2003, 68, 041913. [Google Scholar] [CrossRef] [Green Version]
- Prokhorov, M.D.; Karavaev, A.S.; Ishbulatov, Y.M.; Ponomarenko, V.I.; Kiselev, A.R.; Kurths, J. Interbeat interval variability versus frequency modulation of heart rate. Phys. Rev. E 2021, 103, 042404. [Google Scholar] [CrossRef]
- Tan, C.O. Heart rate variability: Are there complex patterns? Front. Physiol. 2013, 4, 165. [Google Scholar] [CrossRef] [Green Version]
- Bezerianos, A.; Bountis, T.; Papaioannou, G.; Polydoropoulos, P. Nonlinear time series analysis of electrocardiograms. Chaos 1995, 5, 95–101. [Google Scholar] [CrossRef] [PubMed]
- Glass, L. Chaos and heart rate variability. J. Cardiovasc. Electrophysiol. 1990, 10, 1358–1360. [Google Scholar] [CrossRef] [PubMed]
- Kléber, A.G.; Rudy, Y. Basic mechanisms of cardiac impulse propagation and associated arrhythmias. Physiol. Rev. 2004, 84, 431–488. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Milhorn, H.T., Jr.; Benton, R.; Ross, R.; Guyton, A.C. A mathematical model of the human respiratory control system. Biophys. J. 1965, 5, 27–46. [Google Scholar] [CrossRef] [Green Version]
- Kapidžić, A.; Platiša, M.M.; Bojić, T.; Kalauzi, A. RR interval–respiratory signal waveform modeling in human slow paced and spontaneous breathing. Respir. Physiol. Neurobiol. 2014, 203, 51–59. [Google Scholar] [CrossRef]
- Cheng, L.; Ivanova, O.; Fan, H.H.; Khoo, M.C. An integrative model of respiratory and cardiovascular control in sleep-disordered breathing. Respir. Physiol. Neurobiol. 2010, 174, 4–28. [Google Scholar] [CrossRef] [Green Version]
- Magosso, E.; Ursino, M. A mathematical model of CO2 effect on cardiovascular regulation. Am. J. Physiol. Heart Circ. Physiol. 2001, 281, H2036–H2052. [Google Scholar] [CrossRef]
- Karavaev, A.S.; Prokhorov, M.D.; Ponomarenko, V.I.; Kiselev, A.R.; Gridnev, V.I.; Ruban, E.I.; Bezruchko, B.P. Synchronization of low-frequency oscillations in the human cardiovascular system. Chaos 2009, 19, 033112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kotani, K.; Struzik, Z.R.; Takamasu, K.; Stanley, H.E.; Yamamoto, Y. Model for complex heart rate dynamics in health and diseases. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 2005, 72 Pt 1, 041904. [Google Scholar] [CrossRef] [Green Version]
- Seidel, H.; Herzel, H. Bifurcations in a nonlinear model of the baroreceptor-cardiac reflex. Phys. D 1998, 115, 145–160. [Google Scholar] [CrossRef]
- Ben-Tal, A.; Smith, J.C. A model for control of breathing in mammals: Coupling neural dynamics to peripheral gas exchange and transport. J. Theor. Biol. 2008, 251, 480–497. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guyton, A.C.; Hall, J.E. Chapter Regulation of respiration. In Textbook of Medical Physiology, 12th ed.; Saunders: Philadelphia, PA, USA, 2010; pp. 505–513. [Google Scholar]
- Molkov, Y.I.; Shevtsova, N.A.; Park, C.; Ben-Tal, A.; Smith, J.C.; Rubin, J.E.; Rybak, I.A. A closed-loop model of the respiratory system: Focus on hypercapnia and active expiration. PLoS ONE 2014, 9, e109894. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frank, O. The basic shape of the arterial pulse. First treatise: Mathematical analysis. J. Mol. Cell Cardiol. 1990, 22, 255–277. [Google Scholar] [CrossRef]
- Guyton, A.C.; Hall, J.E. Chapter Nervous Regulation of the Circulation, and Rapid Control of Arterial Pressure. In Textbook of Medical Physiology, 12th ed.; Saunders: Philadelphia, PA, USA, 2010; pp. 201–211. [Google Scholar]
- Warner, H.R. The frequency-dependent nature of blood pressure regulation by the carotid sinus studied with an electric analog. Circ. Res. 1958, 6, 35–40. [Google Scholar] [CrossRef] [Green Version]
- Matić, Z.; Platiša, M.M.; Kalauzi, A.; Bojić, T. Slow 0.1 Hz Breathing and Body Posture Induced Perturbations of RRI and Respiratory Signal Complexity and Cardiorespiratory Coupling. Front. Physiol. 2020, 11, 24. [Google Scholar] [CrossRef]
- Grassberger, P.; Procaccia, I. Measuring the strangeness of strange attractors. Phys. D 1983, 9, 189–208. [Google Scholar] [CrossRef]
- Rosenstein, M.T.; Collins, J.J.; de Luca, C.J. A practical method for calculating largest Lyapunov exponents from small data sets. Phys. D 1993, 65, 117–134. [Google Scholar] [CrossRef]
- Natarajan, A.; Pantelopoulos, A.; Emir-Farinas, H.; Natarajan, P. Heart rate variability with photoplethysmography in 8 million individuals: A cross-sectional study. Lancet Digit. Health 2020, 2, e650–e657. [Google Scholar] [CrossRef]
- Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Heart rate variability: Standards of measurement, physiological interpretation and clinical use. Circulation 1996, 93, 1043–1065. [Google Scholar] [CrossRef] [Green Version]
- Ishbulatov, Y.M.; Karavaev, A.S.; Kiselev, A.R.; Simonyan, M.A.; Prokhorov, M.D.; Ponomarenko, V.I.; Mironov, S.A.; Gridnev, V.I.; Bezruchko, B.P.; Shvartz, V.A. Mathematical modeling of the cardiovascular autonomic control in healthy subjects during a passive head-up tilt test. Sci. Rep. 2020, 10, 16525. [Google Scholar] [CrossRef] [PubMed]
- Karavaev, A.S.; Ishbulatov, Y.M.; Ponomarenko, V.I.; Prokhorov, M.D.; Gridnev, V.I.; Bezruchko, B.P.; Kiselev, A.R. Model of human cardiovascular system with a loop of autonomic regulation of the mean arterial pressure. J. Am. Soc. Hypertens. 2016, 10, 235–243. [Google Scholar] [CrossRef]
- Pagani, M.; Montano, N.; Porta, A.; Malliani, A.; Abboud, F.M.; Birkett, C.; Somers, V.K. Relationship between spectral components of cardiovascular variabilities and direct measures of muscle sympathetic nerve activity in humans. Circulation 1997, 95, 1441–1448. [Google Scholar] [CrossRef] [PubMed]
- Kingwell, B.A.; Thompson, J.M.; Kaye, D.M.; McPherson, G.A.; Jennings, G.L.; Esler, M.D. Heart rate spectral analysis, cardiac norepinephrine spillover, and muscle sympathetic nerve activity during human sympathetic nervous activation and failure. Circulation 1994, 90, 234–240. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaplan, D.T.; Furman, M.I.; Pincus, S.M.; Ryan, S.M.; Lipsitz, L.A.; Goldberger, A.L. Aging and the complexity of cardiovascular dynamics. Biophys. J. 1991, 59, 945–949. [Google Scholar] [CrossRef] [Green Version]
- Tulppo, M.P.; Mäkikallio, T.H.; Takala, T.E.; Seppänen, T.; Huikuri, H.V. Quantitative beat-to-beat analysis of heart rate dynamics during exercise. Am. J. Physiol. 1996, 271 Pt 2, H244–H252. [Google Scholar] [CrossRef] [PubMed]
- Lin, L.Y.; Lin, J.L.; Du, C.C.; Lai, L.P.; Tseng, Y.Z.; Huang, S.K. Reversal of deteriorated fractal behavior of heart rate variability by beta-blocker therapy in patients with advanced congestive heart failure. J. Cardiovasc. Electrophysiol. 2001, 12, 26–32. [Google Scholar] [CrossRef] [PubMed]
Parameter | Value | Parameter | Value | Parameter | Value |
---|---|---|---|---|---|
133.33 | 40 | 1.5 | |||
98 | 1.712 × 108 | 0.55 | |||
0.6667 | 1 × 104 | 6.5 × 10−2 | |||
0.212 | 3.6 × 106 | 100 | |||
0.313 | 0.21 | 40 | |||
0.04 | 0 | 0.47 | |||
10 | 0.585 | 50 | |||
0.367 | 61 | 1.2 | |||
−3.3 × 10−2 | 20.7 | 0.94 | |||
0.35 | 0.442 | 2.5 | |||
0.35 | 5 | 1 | |||
0.5 | −0.5 | 0.1 | |||
1 × 10−4 | −50 | 2.5 | |||
ε | 1 × 10−5 | 20 | 1.5 | ||
0.99999 | 0.496 | 0.1 | |||
2 | −5 × 10−5 | 0 | |||
1 | 5.3 × 10−2 | 1.3 | |||
760 | 60 | 0.6 | |||
4.5 | 20 | 0.3 | |||
2.5 | 25 | 5 × 10−2 | |||
2.5 | 7.5 | 0.97 | |||
1 | 16 | 1.8 | |||
7.08 × 10−3 | 0.75 | 2.0 | |||
3.5 × 10−4 | 0.1 | 1.2 | |||
47 | 0.1 | 1.2 | |||
3.3 × 10−5 | , s | 0.78 | 2.65 | ||
4 × 10−2 | , s | 0.125 | 2.65 | ||
7 × 10−2 | 0.5 | 2.1 | |||
25.45 | 25 | 9.5 | |||
2 × 10−3 | 70 | 2 | |||
0.12 | 40 | 2.5 | |||
1.64 × 105 | 10 | 2 | |||
10−7.4 | 2.2 | 2 | |||
101.9 | 1.5 | 0.5 | |||
46 | 10 |
Correlation Dimension | The Largest Lyapunov Exponent | ||
---|---|---|---|
D | 13 | D | 13 |
τ (s) | 0.04 | τ (s) | 1 |
l | 0.1–0.3 | t (s) | 0.6 |
Window length (s) | 1000 | Window length (s) | 1000 |
Indices | Healthy Subject | Control of Respiratory Amplitude and Frequency Is Absent | Significance Level |
---|---|---|---|
Minute volume of ventilation, l | 5.09 ± 0.002 | 12.7 ± 0.0001 | p < 0.05 |
Blood concentration of CO2, mmHg | 40.8 ± 0.0005 | 34.7 ± 0.0006 | p < 0.05 |
Blood concentration of O2, mmHg | 100 ± 0.01 | 126 ± 0.003 | p < 0.05 |
Depth of respiration, l | 0.17 ± 0.0001 | 0.40 ± 0.0001 | p < 0.05 |
Heart frequency, Hz | 1.05 ± 0.0003 | 1.07 ± 0.0006 | p < 0.05 |
SAP, mmHg | 138 ± 0.02 | 136 ± 0.01 | p < 0.05 |
DAP, mmHg | 94 ± 0.02 | 94 ± 0.007 | p < 0.05 |
LF, ms2 | 954 ± 33 | 118 ± 4 | p < 0.05 |
HF, ms2 | 725 ± 20 | 630 ± 6 | p < 0.05 |
λ0 | 0.07 ± 0.002 | 0.07 ± 0.003 | p = 0.10 |
d | 4.70 ± 0.27 | 4.89 ± 0.22 | p = 0.27 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ishbulatov, Y.M.; Bibicheva, T.S.; Gridnev, V.I.; Prokhorov, M.D.; Ogneva, M.V.; Kiselev, A.R.; Karavaev, A.S. Contribution of Cardiorespiratory Coupling to the Irregular Dynamics of the Human Cardiovascular System. Mathematics 2022, 10, 1088. https://doi.org/10.3390/math10071088
Ishbulatov YM, Bibicheva TS, Gridnev VI, Prokhorov MD, Ogneva MV, Kiselev AR, Karavaev AS. Contribution of Cardiorespiratory Coupling to the Irregular Dynamics of the Human Cardiovascular System. Mathematics. 2022; 10(7):1088. https://doi.org/10.3390/math10071088
Chicago/Turabian StyleIshbulatov, Yurii M., Tatiana S. Bibicheva, Vladimir I. Gridnev, Mikhail D. Prokhorov, Marina V. Ogneva, Anton R. Kiselev, and Anatoly S. Karavaev. 2022. "Contribution of Cardiorespiratory Coupling to the Irregular Dynamics of the Human Cardiovascular System" Mathematics 10, no. 7: 1088. https://doi.org/10.3390/math10071088
APA StyleIshbulatov, Y. M., Bibicheva, T. S., Gridnev, V. I., Prokhorov, M. D., Ogneva, M. V., Kiselev, A. R., & Karavaev, A. S. (2022). Contribution of Cardiorespiratory Coupling to the Irregular Dynamics of the Human Cardiovascular System. Mathematics, 10(7), 1088. https://doi.org/10.3390/math10071088