Modeling the Cognitive Activity of an Individual Based on the Mathematical Apparatus of Self-Oscillatory Quantum Mechanics
Abstract
:1. Introduction
2. Brief Description of the Theory of Information Images/Representations
Virtual Particle Theory and Its Comparison with TII
3. Mathematical Apparatus
3.1. Mathematical Apparatus for the Ordinary Case
3.2. Self-Oscillation Model (SOM)
4. Results and Discussion
4.1. Simulation Results
4.2. Discussion of Results
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Kholodny, Y.; Malakhov, D.; Orlov, V.; Kartashov, S.; Alexandrov, Y.; Kovalchuk, M. Study of Neurocognitive Processes in a Paradigm of Information Concealment. Exp. Psychol. 2021, 14, 17–39. [Google Scholar] [CrossRef]
- Chernavsky, D.S. Synergetics and Information: Dynamic Information Theory; Editorial URSS: Moscow, Russia, 2009; 300p. [Google Scholar]
- Kadosh, R.C.; Gevers, W.; Notebaert, W. Sequential analysis of the numerical Stroop effect reveals response suppression. J. Exp. Psychol. Learn. Mem. Cogn. 2011, 37, 1243–1249. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, T.M.; Liu, H.L.; Chan, C.C. (Eds.) Neural correlates of feigned memory impairment. Neuroimage 2005, 28, 305–313. [Google Scholar] [CrossRef]
- Griffith, D.; Greitzer, F. Neo-symbiosis: The next stage in the evolution of human-information interaction. Cogn. Inform. Nat. Intell. 2007, 1, 39–52. [Google Scholar] [CrossRef] [Green Version]
- Vandekerckhove, J. A cognitive latent variable model for the simultaneous analysis of behavioral and personality data. J. Math. Psychol. 2014, 60, 58–71. [Google Scholar] [CrossRef] [Green Version]
- Faugeras, O.; Ingli, J. Stochastic neural field equations: A rigorous footing. J. Math. Biol. 2015, 71, 259–300. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kooi, B.W. Modeling the dynamics of traits involved in fighting-predators–prey system. J. Math. Biol. 2015, 71, 1575–1605. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haazebroek, P.; van Dantzig, S.; Hommel, B. A computational model of perception and action for cognitive robotics. Cogn. Process. 2011, 12, 355–365. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Velichkovsky, B.; Gusev, A.; Vinogradova, V.; Arbekova, O. Cognitive control and a sense of presence in virtual environments. Exp. Psychol. 2016, 9, 5–20. [Google Scholar] [CrossRef] [Green Version]
- Anokhin, K.V. Gene probes for mapping neural networks in learning. In Principles and Mechanisms of Human Brain Activity; Nauka: Leningrad, Russia, 1989; 287p. [Google Scholar]
- Pan, F.; Shi, L.; Lu, Q.; Wu, X.; Xue, S.; Li, Q. The negative priming effect in cognitive conflict processing. Neurosci. Lett. 2016, 628, 35–39. [Google Scholar] [CrossRef] [PubMed]
- Nikolaev, A.R.; Meghanathan, R.N.; van Leeuwen, C. Combining EEG and eye movement recording in free viewing: Pitfalls and possibilities. Brain Cogn. 2016, 107, 55–83. [Google Scholar] [CrossRef] [PubMed]
- Physics of the Microcosm; Nauka: Moscow, Russia, 1980; 233p.
- Petukhov, A.Y.; Polevaya, S.A. Modeling of cognitive brain activity through the information images theory in terms of the bilingual Stroop test. Int. J. Biomath. 2017, 10, 1750092. [Google Scholar] [CrossRef]
- Wilson, C.M.; Johansson, G.; Pourkabirian, A.; Simoen, M.; Johansson, J.R.; Duty, T.; Nori, F.; Delsing, P. Observation of the dynamical Casimir effect in a superconducting circuit. Nature 2011, 479, 376–379. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feynman, R. Theory of Fundamental Processes; Nauka: Moscow, Russia, 1978. [Google Scholar]
- Boum, A. Quantum Mechanics: Fundamentals and Applications; Mir: Moscow, Russia, 1990. [Google Scholar]
- Rodimov, B.N. Self-Oscillatory Quantum Mechanics; LKI Publishing House: Moscow, Russia, 2020; 414p. [Google Scholar]
- Petukhov, A.Y.; Polevaya, S.A.; Polevaya, A.V. Experimental Diagnostics of the Emotional State of Individuals Using External Stimuli and a Model of Neurocognitive Brain Activity. Diagnostics 2022, 12, 125. [Google Scholar] [CrossRef] [PubMed]
- Petukhov, A.; Lobachevsky State University of Nizhny Novgorod; Polevaia, S. Measuring cognitive potential based on the performance of tasks of various levels of complexity. Izv. VUZ. Appl. Nonlinear Dyn. 2022, 30, 311–321. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Petukhov, A.Y.; Petukhov, Y.V. Modeling the Cognitive Activity of an Individual Based on the Mathematical Apparatus of Self-Oscillatory Quantum Mechanics. Mathematics 2022, 10, 4215. https://doi.org/10.3390/math10224215
Petukhov AY, Petukhov YV. Modeling the Cognitive Activity of an Individual Based on the Mathematical Apparatus of Self-Oscillatory Quantum Mechanics. Mathematics. 2022; 10(22):4215. https://doi.org/10.3390/math10224215
Chicago/Turabian StylePetukhov, Alexandr Yurevich, and Yury Vasilevich Petukhov. 2022. "Modeling the Cognitive Activity of an Individual Based on the Mathematical Apparatus of Self-Oscillatory Quantum Mechanics" Mathematics 10, no. 22: 4215. https://doi.org/10.3390/math10224215
APA StylePetukhov, A. Y., & Petukhov, Y. V. (2022). Modeling the Cognitive Activity of an Individual Based on the Mathematical Apparatus of Self-Oscillatory Quantum Mechanics. Mathematics, 10(22), 4215. https://doi.org/10.3390/math10224215