Polynomial Automorphisms, Deformation Quantization and Some Applications on Noncommutative Algebras
Abstract
:1. Introduction
2. Approximation by Tame Automorphisms and the Belov–Kontsevich Conjecture
2.1. Tame Automorphisms
2.2. Approximation by Tame Automorphisms
2.3. Jacobian Conjecture, Dixmier Conjecture and Belov–Kontsevich Conjecture
2.3.1. Jacobian Conjecture
2.3.2. Ind-Schemes and Varieties of Automorphisms
2.3.3. Dixmier Conjecture and Belov–Kontsevich Conjecture
2.4. Tame Automorphisms and the Kontsevich Conjecture
3. Quantization Proof of Bergman’s Centralizer Theorem
3.1. Centralizer Theorems
3.2. Reduction to Generic Matrix
3.3. Quantization Proof of Rank One
3.4. Centralizers Are Integrally Closed
3.5. Proof of Bergman’s Centralizer Theorem
4. Noncommutative Białynicki-Birula Theorem
4.1. Actions of Algebraic Tori
- Any effective regular torus action on is linearizable (Gutwirth [52]).
- Any effective regular torus action on has a fixed point (Bialynicki-Birula [50]).
- Any effective regular action of on is linearizable (Bialynicki-Birula [51]).
- Any (effective, regular) one-dimensional torus action (i.e., action of ) on is linearizable (Koras and Russell [53]).
- If the ground field is not algebraically closed, then a torus action on need not be linearizable. In [54], Asanuma proved that over any field , if there exists a non-rectifiable closed embedding from into , then there exist non-linearizable effective actions of on for .
- When is infinite and has a positive characteristic, there are examples of non-linearizable torus actions on (Asanuma [54]).
4.2. Non-Linearizable Torus Actions and Problems
5. Feigin’s Conjecture and the Lattice W-Algebras
5.1. Feigin’s Homomorphisms on
5.2. The Quantum Serre Relations and the Screening Operators
Case
6. Lattice Virasoro Algebra
6.1. Lattice Virasoro Algebra Associated with
- 1.
- We have
- 2.
- 3.
6.2. Generators of Lattice Virasoro Algebra Coming from 3 and 4-Dimensional Representation of sl2
6.3. Conclusions
7. Weak Faddeev–Takhtajan–Volkov Algebras; Lattice Wn Algebras
7.1. Weak Faddeev–Takhtajan–Volkov Algebras
Lattice W2 Algebra
- –
- First step: find .To do this and for simplicity, we will skip details here in this review paper and will refer the interested reader to [64]. We have
- –
- Second step: find .To find , we note that it resembles the degree of our polynomial function. So if, for example, acts on , then we should get . So let us define:
7.2. Lattice W3 Algebra
Lattice Wn Algebra; Main Generator
8. Concluding Remarks and Some Open Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shafarevich, I.R. On some infinite-dimensional groups. II. Izv. Ross. Akad. Nauk Ser. Mat. 1981, 45, 214–226. [Google Scholar]
- Belov-Kanel, A.; Kontsevich. The Jacobian conjecture is stably equivalent to the Dixmier conjecture. Mosc. Math. J. 2007, 7, 209–218. [Google Scholar] [CrossRef] [Green Version]
- Tsuchimoto, Y. Endomorphisms of Weyl algebra and p-curvatures. Osaka J. Math. 2005, 42, 435–452. [Google Scholar]
- Jung, H.W. Über ganze birationale Transformationen der Ebene. J. Reine Angew. Math. 1942, 184, 161–174. [Google Scholar] [CrossRef]
- Makar–Limanov, L. On automorphisms of Weyl algebra. Bull. Soc. Math. Fr. 1984, 112, 359–363. [Google Scholar] [CrossRef] [Green Version]
- Makar–Limanov, L. Automorphisms of a free algebra with two generators. Funct. Anal. Appl. 1970, 4, 262–264. [Google Scholar] [CrossRef]
- Van der Kulk, W. On polynomial rings in two variables. Nieuw Arch. Wisk. 1953, 1, 33–41. [Google Scholar]
- Belov-Kanel, A.; Kontsevich, M. Automorphisms of the Weyl algebra. Lett. Math. Phys. 2005, 74, 181–199. [Google Scholar] [CrossRef] [Green Version]
- Belov-Kanel, A.; Elishev, A. On planar algebraic curves and holonomic D-modules in positive characteristic. J. Algebra Appl. 2016, 15, 1650155. [Google Scholar] [CrossRef] [Green Version]
- Kanel-Belov, A.; Elishev, A.; Yu, J.-T. Independence of the B-KK isomorphism of infinite prime. arXiv 2015, arXiv:1512.06533. [Google Scholar]
- Anick, D.J. Limits of tame automorphisms of k[x1,…,xn]. J. Algebra 1983, 82, 459–468. [Google Scholar] [CrossRef] [Green Version]
- Kanel-Belov, A.; Grigoriev, S.; Elishev, A.; Yu, J.-T.; Zhang, W. Lifting of polynomial symplectomorphisms and deformation quantization. Comm. Algebra 2018, 46, 3926–3938. [Google Scholar] [CrossRef] [Green Version]
- Keller, O.-H. Ganze cremona-transformationen. Monatsh. Math. Phys. 1939, 47, 299–306. [Google Scholar] [CrossRef]
- Dicks, W. Automorphisms of the free algebra of rank two, Group actions on rings. Contemp. Math. 1985, 43, 63–68. [Google Scholar]
- Dicks, W.; Lewin, J. A Jacobian conjecture for free associative algebras. Comm. Algebra 1982, 10, 1285–1306. [Google Scholar] [CrossRef]
- Umirbaev, U. On the extension of automorphisms of polynomial rings. Sib. Math. J. 1995, 36, 787–791. [Google Scholar] [CrossRef]
- Yagzhev, A.V. Invertibility of endomorphism of free associative algebras. Math. Notes 1991, 49, 426–430. [Google Scholar] [CrossRef]
- Yagzhev, A.V. Endomorphisms of free algebras. Sib. Math. J. 1980, 21, 133–141. [Google Scholar] [CrossRef]
- Yagzhev, A.V. Algorithmic problem of recognizing automorphisms among endomorphisms of free associative algebras of finite rank. Sib. Math. J. 1980, 21, 142–146. [Google Scholar] [CrossRef]
- Yagzhev, A.V. Keller’s problem. Sib. Math. J. 1980, 21, 747–754. [Google Scholar] [CrossRef]
- Belov, A.; Bokut, L.; Rowen, L.; Yu, J.-T. The Jacobian Conjecture, together with Specht and Burnside-type problems. In Automorphisms in Birational and Affine Geometry; Springer: Berlin/Heidelberg, Germany, 2014; pp. 249–285. [Google Scholar]
- Dixmier, J. Sur les algebres de Weyl. Bull. Soc. Math. Fr. 1968, 96, 209–242. [Google Scholar] [CrossRef] [Green Version]
- Van den Essen, A. Polynomial Automorphisms: The Jacobian Conjecture; Birkhäuser: Basel, Switzerland, 2012. [Google Scholar]
- Tsuchimoto, Y. Preliminaries on Dixmier conjecture. Mem. Fac. Sci. Kochi Univ. Ser. A Math. 2003, 24, 43–59. [Google Scholar]
- Czerniakiewicz, A.J. Automorphisms of a free associative algebra of rank 2. I. Trans. Am. Math. Soc. 1971, 160, 393–401. [Google Scholar]
- Czerniakiewicz, A.J. Automorphisms of a free associative algebra of rank 2. II. Trans. Am. Math. Soc. 1972, 171, 309–315. [Google Scholar] [CrossRef] [Green Version]
- Kanel-Belov, A.; Elishev, A.; Yu, J.-T. Augmented polynomial symplectomorphisms and quantization. arXiv 2018, arXiv:1812.02859. [Google Scholar]
- Dodd, C. The p-Cycle of Holonomic D-modules and Auto-Equivalences of the Weyl Algebra. arXiv 2015, arXiv:1510.05734. [Google Scholar]
- Shestakov, I.; Umirbaev, U. Poisson brackets and two-generated subalgebras of rings of polynomials. J. Am. Math. Soc. 2004, 17, 181–196. [Google Scholar] [CrossRef]
- Shestakov, I.; Umirbaev, U. The Nagata automorphism is wild. Proc. Natl. Acad. Sci. USA 2003, 100, 12561–12563. [Google Scholar] [CrossRef] [Green Version]
- Kanel-Belov, A.; Yu, J.-T.; Elishev, A. On the augmentation topology on automorphism groups of affine spaces and algebras. Internat. J. Algebra Comput. 2018, 28, 1449–1485. [Google Scholar] [CrossRef]
- Belov, A.K.; Razavinia, F.; Zhang, W. Bergman’s centralizer theorem and quantization. Comm. Algebra 2018, 46, 2123–2129. [Google Scholar] [CrossRef] [Green Version]
- Sharifi, Y. Centralizers in Associative Algebras. Ph.D. Thesis, Simon Fraser University, Burnaby, BC, Canada, 2013. [Google Scholar]
- Lothaire, M. Combinatorics on Words; Cambridge University Press: Cambridge, UK, 1997; Volume 17. [Google Scholar]
- Cohn, P.M. Subalgebras of free associative algebras. Proc. Am. Math. Soc. 1964, 3, 618–632. [Google Scholar] [CrossRef]
- Bergman, G.M. Centralizers in free associative algebras. Trans. Am. Math. Soc. 1969, 137, 327–344. [Google Scholar] [CrossRef]
- Miasnikov, N. Centralizers in free group algebras and nonsingular curves. J. Algebra 2018, 516, 490–513. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W. Polynomial Automorphisms and Deformation Quantization. Ph.D. Thesis, Bar-Ilan University, Ramat Gan, Israel, 2020. [Google Scholar]
- Amitsur, S.A. Algebras over infinite fields. Proc. Am. Math. Soc. 1956, 7, 35–48. [Google Scholar] [CrossRef]
- De Concini, C.; Procesi, C. A characteristic free approach to invariant theory. In Young Tableaux in Combinatorics, Invariant Theory and Algebra; Elsevier: Amsterdam, The Netherlands, 1982; pp. 169–193. [Google Scholar]
- De Concini, C.; Procesi, C. The Invariant Theory of Matrices; American Mathematical Society: Providence, RI, USA, 2017. [Google Scholar]
- Procesi, C. The invariant theory of n × n matrices. Adv. Math. 1976, 19, 306–381. [Google Scholar] [CrossRef] [Green Version]
- Zubkov, A.N. Matrix invariants over an infinite field of finite characteristic. Sib. Math. J. 1993, 34, 1059–1065. [Google Scholar] [CrossRef]
- Zubkov, A.N. A generalization of the Razmyslov-Procesi theorem. Algebra Log. 1996, 35, 241–254. [Google Scholar] [CrossRef]
- Donkin, S. Invariants of several matrices. Invent. Math. 1992, 110, 389–401. [Google Scholar] [CrossRef]
- Donkin, S. Invariant functions on matrices. Math. Proc. Camb. Philos. Soc. 1993, 113, 23–43. [Google Scholar] [CrossRef]
- Belov-Kanel, A.; Razavinia, F.; Zhang, W. Centralizers in free associative algebras and generic matrices. arXiv 2018, arXiv:1812.03307. [Google Scholar]
- Kambayashi, T.; Russell, P. On linearizing algebraic torus actions. J. Pure Appl. Algebra 1982, 23, 243–250. [Google Scholar] [CrossRef] [Green Version]
- Belov-Kanel, A.Y.; Elishev, A.M.; Razavinia, F.; Yu, J.-T.; Zhang, W. Noncommutative Bialynicki-Birula theorem. Chebyshevskii Sb. 2020, 21, 51–61. [Google Scholar]
- Białynicki-Birula, A. Remarks on the action of an algebraic torus on kn. I. Bull. Acad. Polon. Sci. Ser. Sci. Math. Astro. Phys. 1966, 14, 177–181. [Google Scholar]
- Białynicki-Birula, A. Remarks on the action of an algebraic torus on kn. II. Bull. Acad. Polon. Sci. Ser. Sci. Math. Astro. Phys. 1967, 15, 123–125. [Google Scholar]
- Gutwirth, A. The action of an algebraic torus on the affine plane. Trans. Am. Math. Soc. 1962, 105, 407–414. [Google Scholar] [CrossRef]
- Koras, M.; Russell, P. C*-actions on C3: The smooth locus of the quotient is not of hyperbolic type. J. Algebr. Geom. 1999, 8, 603–694. [Google Scholar]
- Asanuma, T. Non-linaearazible k*-actions in affine space. Invent. Math. 1999, 138, 281–306. [Google Scholar] [CrossRef]
- Zung, N.T. Torus actions and integrable systems. arXiv 2004, arXiv:math/0407455. [Google Scholar]
- Elishev, A.; Kanel-Belov, A.; Razavinia, F.; Yu, J.-T.; Zhang, W. Torus actions on free associative algebras, lifting and Biał ynicki-Birula type theorems. arXiv 2019, arXiv:1901.01385. [Google Scholar]
- Drensky, V.; Yu, J.-T. A cancellation conjecture for free associative algebras. Proc. Am. Math. Soc. 2008, 136, 3391–3394. [Google Scholar] [CrossRef]
- Schwarz, G. Exotic algebraic group actions. C. R. Acad. Sci. Paris Ser. I 1989, 309, 89–94. [Google Scholar]
- Berenstein, A. Group-like elements in quantum groups and Feigin’s conjecture. arXiv 1996, arXiv:q-alg/9605016. [Google Scholar]
- Iohara, K.; Malikov, F. Rings of skew polynomials and Gel’fand–Kirillov Conjecture for quantum groups. Commun. Math. Phys. 1994, 164, 217–237. [Google Scholar] [CrossRef] [Green Version]
- Klimyk, A.; Schmüdgen, K. Quantum Groups and Their Representations; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Alekseev, A.; Faddeev, L.; Semenov-Tian-Shansky, M. Hidden quantum groups inside Kac–Moody algebra. Commun. Math. Phys. 1992, 149, 335–345. [Google Scholar] [CrossRef]
- Razavinia, F. Local coordinate systems on quantum flag manifolds. Chebyshevskii Sb. 2020, 21, 171–195. [Google Scholar] [CrossRef]
- Razavinia, F. Weak Faddeev–Takhtajan–Volkov algebras; Lattice Wn algebras. Chebyshevskii Sb. 2020, 22, 273–291. [Google Scholar] [CrossRef]
- Hikami, K. Lattice WN Algebra and Its Quantization. Nuclear Phys. B 1997, 505, 749–770. [Google Scholar] [CrossRef]
- Hikami, K.; Rei, I. Classical lattice W algebras and integrable systems. J. Phys. A Math. Gen. 1997, 30, 6911. [Google Scholar] [CrossRef]
- Antonov, A.; Belov, A.; Chaltikian, K. Lattice conformal theories and their integrable perturbations. J. Geom. Phys. 1997, 22, 298–318. [Google Scholar] [CrossRef] [Green Version]
- Belov, A.A.; Karen, D.C. Lattice analogues of W-algebras and classical integrable equations. Phys. Lett. B 1993, 309, 268–274. [Google Scholar] [CrossRef] [Green Version]
- Pugay, Y.P. Lattice W algebras and quantum groups. Theoret. Math. Phys. 1994, 100, 900–911. [Google Scholar] [CrossRef] [Green Version]
- Zamolodchikov, A.B. Infinite additional symmetries in two-dimensional conformal quantum field theory. Teoret. Mat. Fiz. 1985, 65, 347–359. [Google Scholar] [CrossRef]
- Fateev, V.A.; Zamolodchikov, A.B. Conformal quantum field theory models in two dimensions having Z3 symmetry. Nuclear Phys. B 1987, 280, 644–660. [Google Scholar] [CrossRef]
- Fateev, V.A.; Lykyanov, S.L. The models of two-dimensional conformal quantum field theory with Zn symmetry. Internat. J. Modern Phys. A 1988, 3, 507–520. [Google Scholar] [CrossRef]
- Fateev, V.A.; Lykyanov, S.L. Poisson–Lie groups and classical W-algebras. Internat. J. Modern Phys. A 1992, 7, 853–876. [Google Scholar] [CrossRef]
- Fateev, V.A.; Lykyanov, S.L. Vertex operators and representations of quantum universal enveloping algebras. Internat. J. Modern Phys. A 1992, 7, 1325–1359. [Google Scholar] [CrossRef]
- Drinfel’d, V.G.; Sokolov, V.V. Lie algebras and equations of Korteweg–de Vries type. J. Soviet Math. 1985, 30, 1975–2036. [Google Scholar] [CrossRef]
- Dotsenko, V.S. Lectures on conformal field theory. Adv. Stud. Pure Math. 1988, 16, 123–170. [Google Scholar]
- Bershadsky, M.; Ooguri, H. Heidden SL(n) symmetry in conformal field theories. Comm. Math. Phys. 1989, 126, 49–83. [Google Scholar] [CrossRef]
- Belavin, A.A. KdV-type equations and W-algebras. Adv. Stud. Pure Math. 1989, 19, 117–125. [Google Scholar]
- Feigin, B.; Frenkel, E. Quantization of the Drinfeld–Sokolov reduction. Phys. Lett. B 1990, 246, 75–81. [Google Scholar] [CrossRef]
- Faddeev, L.D.; Takhtajan, L.A. Liouville model on the lattice. Lect. Notes Phys. 1986, 246, 166–179. [Google Scholar]
- Goursat, E. A Course in Mathematical Analysis: Pt. 2. Differential Equations; Dover Publications: Mineola, NY, USA, 1916; Volume 2. [Google Scholar]
- Caressa, P. The algebra of Poisson brackets. In Proceedings of the Young Algebra Seminar, Rome, Italy, 10 November 2000; Available online: http://www.caressa.it/pdf/yas.pdf (accessed on 8 September 2022).
- Fu, C. Feigin’s map revisited. J. Pure Appl. Algebra 2018, 222, 4199–4222. [Google Scholar] [CrossRef]
- Berenstein, A.; Rupel, D. Quantum cluster characters of Hall algebras. Sel. Math. New Ser. 2015, 21, 1121–1176. [Google Scholar] [CrossRef] [Green Version]
- Leclerc, B. Dual canonical bases, quantum shuffles and q-characters. Math. Zeit. 2004, 246, 691–732. [Google Scholar] [CrossRef] [Green Version]
- Reineke, M. Feigin’s map and monomial bases for quantized enveloping algebras. Math. Zeit. 2001, 237, 639–667. [Google Scholar] [CrossRef]
- Reineke, M. Poisson automorphisms and quiver moduli. J. Inst. Math. Jussieu 2010, 9, 653–667. [Google Scholar] [CrossRef] [Green Version]
- Rupel, D. The Feigin tetrahedron. Symmetry Integr. Geom. Methods Appl. 2015, 11, 24–30. [Google Scholar] [CrossRef] [Green Version]
- Izosimov, A.; Gloria, M.B. What is a lattice W-algebra? arXiv 2022, arXiv:2206.14757. [Google Scholar]
- Khesin, B.; Zakharevich, I. Poisson-Lie group of pseudodifferential symbols. Comm. Math. Phys. 1995, 171, 475–530. [Google Scholar] [CrossRef] [Green Version]
- Volkov, A.Y. Miura transformation on a lattice. Theor. Math. Phys. 1988, 74, 96–99. [Google Scholar] [CrossRef]
- Suris, Y.B. Integrable discretizations for lattice system: Local equations of motion and their Hamiltonian properties. Rev. Math. Phys. 1999, 11, 727–822. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, W.; Yavich, R.; Belov-Kanel, A.; Razavinia, F.; Elishev, A.; Yu, J. Polynomial Automorphisms, Deformation Quantization and Some Applications on Noncommutative Algebras. Mathematics 2022, 10, 4214. https://doi.org/10.3390/math10224214
Zhang W, Yavich R, Belov-Kanel A, Razavinia F, Elishev A, Yu J. Polynomial Automorphisms, Deformation Quantization and Some Applications on Noncommutative Algebras. Mathematics. 2022; 10(22):4214. https://doi.org/10.3390/math10224214
Chicago/Turabian StyleZhang, Wenchao, Roman Yavich, Alexei Belov-Kanel, Farrokh Razavinia, Andrey Elishev, and Jietai Yu. 2022. "Polynomial Automorphisms, Deformation Quantization and Some Applications on Noncommutative Algebras" Mathematics 10, no. 22: 4214. https://doi.org/10.3390/math10224214
APA StyleZhang, W., Yavich, R., Belov-Kanel, A., Razavinia, F., Elishev, A., & Yu, J. (2022). Polynomial Automorphisms, Deformation Quantization and Some Applications on Noncommutative Algebras. Mathematics, 10(22), 4214. https://doi.org/10.3390/math10224214