Investigation of Terrorist Organizations Using Intelligent Tools: A Dynamic Network Analysis with Weighted Links
Abstract
:1. Introduction
- Q1:
- “How can the presence of distinct roles among the members of a terrorist organization be revealed, using global network indices?”
- Q2:
- “Is the presence of distinct roles related to terrorist activity?”
- Q3:
- “Are there early signs of imminent terrorist activity expressed in terms of network indices?”
2. Methodology and Datasets
2.1. Global Indices
2.1.1. Density
2.1.2. Small Worldness
2.1.3. Centralizations
2.1.4. Average Centralities
2.1.5. Standard Deviations of Centralities
2.2. Datasets
3. Results
3.1. Results of the Calculations
- Supplementary Material S1: The results of the calculations for the “Jamaah Islamiah section of Indonesia”.
- Supplementary Material S2: The results of the calculations for the “Hamburg Cell”.
- Supplementary Material S3: The results of the calculations for the “Al-Qaeda section of Madrid”.
- Supplementary Material S4: The results of the calculations for the centralities for the “Jamaah Islamiah section of Philippines”.
3.2. Visual Representation of Terrorist Networks
3.3. Temporal Development of Density and Small Worldness
3.4. Temporal Development of Degree and Betweenness Centralization
3.5. Temporal Development of Average Degree and Betweenness Centralities
3.6. Temporal Development of Standard Deviation of Degree and Betweenness Centralities
4. Discussion
4.1. Presence of Distinct Roles
4.2. Relation of the Presence of Distinct Roles with Terrorist Activity
4.3. Early Signs of Imminent Terrorist Activity
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Jackson, R.; Smyth, M.B.; Gunning, J. Critical Terrorism Studies: A New Research Agenda; Routledge: London, UK, 2009; ISBN 978-1-134-05051-2. [Google Scholar]
- Council of the European Union; European Union. Criminal Offence to Participate in a Criminal Organisation. Off. J. Eur. Union 1998, 31998F0733, 1–3. [Google Scholar]
- Council of The European Union. Fight Against Organised Crime. Off. J. Eur. Union. Available online: https://www.consilium.europa.eu/en/policies/eu-fight-against-crime/ (accessed on 1 August 2021).
- Pacheco, J.M. Crime as a Complex System: Comment on “Statistical Physics of Crime: A Review” by M.R. D’Orsogna and M. Perc. Phys. Life Rev. 2015, 12, 32–33. [Google Scholar] [CrossRef] [PubMed]
- Primicerio, M. The Role of Mathematical Modelling in Modern Criminology: Comment on “Statistical Physics of Crime: A Review” by M.R. D’Orsogna and M. Perc. Phys. Life Rev. 2015, 12, 34–35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ribeiro, H.V. We Need More Empirical Investigations and Model Validation for a Better Understanding of Crime: Comment on “Statistical Physics of Crime: A Review” by M.R. D’Orsogna and M. Perc. Phys. Life Rev. 2015, 12, 36–37. [Google Scholar] [CrossRef]
- Rodríguez, N. Recent Advances in Mathematical Criminology: Comment on “Statistical Physics of Crime: A Review” by M.R. D’Orsogna and M. Perc. Phys. Life Rev. 2015, 12, 38–39. [Google Scholar] [CrossRef]
- D’Orsogna, M.R.; Perc, M. Physics for Better Human Societies: Reply to Comments on “Statistical Physics of Crime: A Review”. Phys. Life Rev. 2015, 12, 40–43. [Google Scholar] [CrossRef]
- Kolaczyk, E.D.; Csárdi, G. Network Topology Inference. In Statistical Analysis of Network Data with R; Springer International Publishing: Cham, Switzerland, 2020; pp. 115–140. ISBN 978-3-030-44129-6. [Google Scholar]
- Freeman, L.C. Centrality in Social Networks Conceptual Clarification. Soc. Netw. 1978, 1, 215–239. [Google Scholar] [CrossRef] [Green Version]
- Wasserman, S.; Faust, K. Social Network Analysis: Methods and Applications; Cambridge University Press: Cambridge, MA, USA, 1994; ISBN 978-0-521-38707-1. [Google Scholar]
- Restrepo, J.G.; Ott, E.; Hunt, B.R. Characterizing the Dynamical Importance of Network Nodes and Links. Phys. Rev. Lett. 2006, 97, 094102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodríguez, J.A.; Estrada, E.; Gutiérrez, A. Functional Centrality in Graphs. Linear Multilinear Algebra 2007, 55, 293–302. [Google Scholar] [CrossRef] [Green Version]
- Klein, D.J. Centrality Measure in Graphs. J. Math. Chem. 2010, 47, 1209–1223. [Google Scholar] [CrossRef]
- Boldi, P.; Vigna, S. Axioms for Centrality. Internet Math. 2014, 10, 222–262. [Google Scholar] [CrossRef] [Green Version]
- Hughes, C.E.; Bright, D.A.; Chalmers, J. Social Network Analysis of Australian Poly-Drug Trafficking Networks: How Do Drug Traffickers Manage Multiple Illicit Drugs? Soc. Netw. 2017, 51, 135–147. [Google Scholar] [CrossRef]
- Baika, L.; Campana, P. Centrality, Mobility, and Specialization: A Study of Drug Markets in a Non-Metropolitan Area in the United Kingdom. J. Drug Issues 2020, 50, 107–126. [Google Scholar] [CrossRef]
- de Bie, J.L.; de Poot, C.J.; Freilich, J.D.; Chermak, S.M. Changing Organizational Structures of Jihadist Networks in the Netherlands. Soc. Netw. 2017, 48, 270–283. [Google Scholar] [CrossRef]
- Gutfraind, A.; Genkin, M. A Graph Database Framework for Covert Network Analysis: An Application to the Islamic State Network in Europe. Soc. Netw. 2017, 51, 178–188. [Google Scholar] [CrossRef]
- Vespignani, A.; Caldarelli, G. Large Scale Structure and Dynamics of Complex Networks: From Information Technology to Finance and Natural Science; World Scientific: Singapore, 2007; ISBN 978-981-4475-41-9. [Google Scholar]
- Estrada, E. The Structure of Complex Networks: Theory and Applications; OUP Oxford: Oxford, UK, 2012; ISBN 978-0-19-959175-6. [Google Scholar]
- Newman, M. Networks; Oxford University Press: Oxford, UK, 2018; ISBN 978-0-19-252749-3. [Google Scholar]
- Kolaczyk, E.D.; Csárdi, G. Modeling and Prediction for Processes on Network Graphs. In Statistical Analysis of Network Data with R; Springer International Publishing: Cham, Switzerland, 2020; pp. 141–167. ISBN 978-3-030-44129-6. [Google Scholar]
- Kolaczyk, E.D.; Csárdi, G. Descriptive Analysis of Network Graph Characteristics. In Statistical Analysis of Network Data with R; Springer International Publishing: Cham, Switzerland, 2020; pp. 43–68. ISBN 978-3-030-44129-6. [Google Scholar]
- Spyropoulos, A.Z.; Bratsas, C.; Makris, G.C.; Ioannidis, E.; Tsiantos, V.; Antoniou, I. Entropy and Network Centralities as Intelligent Tools for the Investigation of Terrorist Organizations. Entropy 2021, 23, 1334. [Google Scholar] [CrossRef] [PubMed]
- Agreste, S.; Catanese, S.; De Meo, P.; Ferrara, E.; Fiumara, G. Network Structure and Resilience of Mafia Syndicates. Inf. Sci. 2016, 351, 30–47. [Google Scholar] [CrossRef] [Green Version]
- Barrat, A.; Barthélemy, M.; Vespignani, A. Dynamical Processes on Complex Networks; Cambridge University Press: Cambridge, MA, USA, 2008; ISBN 978-1-107-37742-4. [Google Scholar]
- Opsahl, T.; Agneessens, F.; Skvoretz, J. Node Centrality in Weighted Networks: Generalizing Degree and Shortest Paths. Soc. Netw. 2010, 32, 245–251. [Google Scholar] [CrossRef]
- Yang, C.C.; Ng, T.D. New Brunswick, NJ Terrorism and Crime Related Weblog Social Network: Link, Content Analysis and Information Visualization. IEEE Intell. Secur. Inform. 2007, 55–58. [Google Scholar] [CrossRef]
- Saramäki, J.; Kivelä, M.; Onnela, J.-P.; Kaski, K.; Kertész, J. Generalizations of the Clustering Coefficient to Weighted Complex Networks. Phys. Rev. E 2007, 75, 027105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Memon, B.R. Identifying Important Nodes in Weighted Covert Networks Using Generalized Centrality Measures. In Proceedings of the 2012 European Intelligence and Security Informatics Conference, Odense, Denmark, 22–24 August 2012; pp. 131–140. [Google Scholar]
- Kolaczyk, E.D.; Csárdi, G. Dynamic Networks. In Statistical Analysis of Network Data with R; Springer International Publishing: Cham, Switzerland, 2020; pp. 207–223. ISBN 978-3-030-44129-6. [Google Scholar]
- Chaisson, E.J.; Chaisson, E. Cosmic Evolution: The Rise of Complexity in Nature; Harvard University Press: Cambridge, MA, USA, 2001; ISBN 978-0-674-00987-5. [Google Scholar]
- Thurner, S.; Hanel, R.; Klimek, P. Introduction to the Theory of Complex Systems; Oxford University Press: Oxford, UK, 2018; ISBN 978-0-19-255507-6. [Google Scholar]
- Holme, P.; Saramaki, J. Temporal Network Theory; Springer: Berlin/Heidelberg, Germany, 2019. [Google Scholar]
- Holme, P.; Saramaki, J. Temporal Networks. Phys. Rep. 2012, 519, 97–125. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Mo, H.; Wang, F. Evolution of Air Transport Network of China 1930–2012. J. Transp. Geogr. 2014, 40, 145–158. [Google Scholar] [CrossRef]
- Huang, Y.; Lu, S.; Yang, X.; Zhao, Z. Exploring Railway Network Dynamics in China from 2008 to 2017. ISPRS Int. J. Geo-Inf. 2018, 7, 320. [Google Scholar] [CrossRef] [Green Version]
- Humphries, M.D.; Gurney, K. Network ‘Small-World-Ness’: A Quantitative Method for Determining Canonical Network Equivalence. PLoS ONE 2008, 3, e0002051. [Google Scholar] [CrossRef]
- Das, K.; Samanta, S.; Pal, M. Study on Centrality Measures in Social Networks: A Survey. Soc. Netw. Anal. Min. 2018, 8, 13. [Google Scholar] [CrossRef]
- Kang, S.M. Equicentrality and Network Centralization: A Micro–Macro Linkage. Soc. Netw. 2007, 29, 585–601. [Google Scholar] [CrossRef]
- White, D.R.; Borgatti, S.P. Betweenness Centrality Measures for Directed Graphs. Soc. Netw. 1994, 16, 335–346. [Google Scholar] [CrossRef] [Green Version]
- John Jay & ARTIS Transnational Terrorism Database. Available online: http://doitapps.jjay.cuny.edu/jjatt/index.php (accessed on 16 December 2021).
- CASOS Computational Analysis of Social and Organizational Systems (Carnegie Mellon University). Available online: http://www.casos.cs.cmu.edu/index.php (accessed on 26 June 2021).
- John Jay & ARTIS Transnational Terrorism Database Austrailian Embassy Bombing Data Set [Data Set]. 2016. Available online: http://doitapps.jjay.cuny.edu/jjatt/index.php (accessed on 1 August 2021).
- Jemaah Islamiyah—Wikipedia. Available online: https://en.wikipedia.org/w/index.php?title=Jemaah_Islamiyah&oldid=1025043319 (accessed on 26 June 2021).
- Australian Embassy Bombing in Jakarta-Wikipedia. Available online: https://en.wikipedia.org/wiki/Australian_Embassy_bombing_in_Jakarta (accessed on 10 August 2021).
- John Jay & ARTIS Transnational Terrorism Database Hamburg Cell 9/11 [Data Set]. 2001. Available online: http://doitapps.jjay.cuny.edu/jjatt/data.php (accessed on 1 August 2021).
- Hamburg Cell—Wikipedia. Available online: https://en.wikipedia.org/w/index.php?title=Hamburg_cell&oldid=977822420 (accessed on 10 August 2021).
- John Jay & ARTIS Transnational Terrorism Database Madrid Train Bombing 2004 [Data Set]. 2004. Available online: http://doitapps.jjay.cuny.edu/jjatt/data.php (accessed on 1 August 2021).
- Madrid Train Bombings—Wikipedia. 2004. Available online: https://en.wikipedia.org/w/index.php?title=2004_Madrid_train_bombings&oldid=1037095728 (accessed on 10 August 2021).
- John Jay & ARTIS Transnational Terrorism Database Phillippines Bombing [Data Set]. 2000. Available online: http://doitapps.jjay.cuny.edu/jjatt/data.php (accessed on 1 August 2021).
- Rizal Day Bombings—Wikipedia. Available online: https://en.wikipedia.org/w/index.php?title=Rizal_Day_bombings&oldid=1033689495 (accessed on 10 August 2021).
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Spyropoulos, A.Z.; Bratsas, C.; Makris, G.C.; Ioannidis, E.; Tsiantos, V.; Antoniou, I. Investigation of Terrorist Organizations Using Intelligent Tools: A Dynamic Network Analysis with Weighted Links. Mathematics 2022, 10, 1092. https://doi.org/10.3390/math10071092
Spyropoulos AZ, Bratsas C, Makris GC, Ioannidis E, Tsiantos V, Antoniou I. Investigation of Terrorist Organizations Using Intelligent Tools: A Dynamic Network Analysis with Weighted Links. Mathematics. 2022; 10(7):1092. https://doi.org/10.3390/math10071092
Chicago/Turabian StyleSpyropoulos, Alexandros Z., Charalampos Bratsas, Georgios C. Makris, Evangelos Ioannidis, Vassilis Tsiantos, and Ioannis Antoniou. 2022. "Investigation of Terrorist Organizations Using Intelligent Tools: A Dynamic Network Analysis with Weighted Links" Mathematics 10, no. 7: 1092. https://doi.org/10.3390/math10071092
APA StyleSpyropoulos, A. Z., Bratsas, C., Makris, G. C., Ioannidis, E., Tsiantos, V., & Antoniou, I. (2022). Investigation of Terrorist Organizations Using Intelligent Tools: A Dynamic Network Analysis with Weighted Links. Mathematics, 10(7), 1092. https://doi.org/10.3390/math10071092