Monotone Iterative Technique for a New Class of Nonlinear Sequential Fractional Differential Equations with Nonlinear Boundary Conditions under the ψ-Caputo Operator
Abstract
:1. Introduction
2. Preliminaries
- 1.
- ;
- 2.
- ;
- 3.
- ;
- 4.
- ;
- 5.
- 1.
- for any ;
- 2.
- .
- 1.
- ;
- 2.
- ;
- 3.
- and ;
- 4.
- and .
3. Main Results
4. An Example
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hilfer, R. Applications of Fractional Calculus in Physics; World Scientific: Singapore, 2000. [Google Scholar]
- Mainardi, F. Fractional Calculus and Waves in Linear Viscoelasticity; Imperial College Press: London, UK, 2010. [Google Scholar]
- Podlubny, I. Fractional Differential Equations; Academic Press: San Diego, CA, USA, 1999. [Google Scholar]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; Elsevier: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Gorenflo, R.; Kilbas, A.A.; Mainardi, F.; Rogosin, S.V. Mittag–Leffler Functions, Related Topics and Applications; Springer: New York, NY, USA, 2014. [Google Scholar]
- Abbas, S.; Benchohra, M.; N’Guérékata, G.M. Topics in Fractional Differential Equations; Springer: New York, NY, USA, 2012. [Google Scholar]
- Abbas, S.; Benchohra, M.; Graef, J.R.; Henderson, J. Implicit Fractional Differential and Integral Equations: Existence and Stability; De Gruyter: Berlin, Germany, 2018. [Google Scholar]
- Almeida, R.A. Caputo fractional derivative of a function with respect to another function. Commun. Nonlinear Sci. Numer. Simul. 2017, 44, 460–481. [Google Scholar] [CrossRef] [Green Version]
- Almeida, R.; Malinowska, A.B.; Monteiro, M.T.T. Fractional differential equations with a Caputo derivative with respect to a kernel function and their applications. Math. Meth. Appl. Sci. 2018, 41, 336–352. [Google Scholar] [CrossRef] [Green Version]
- da C. Sousa, J.V.; Capelas de Oliveira, E. On the ψ–Hilfer fractional derivative. Commun. Nonlinear Sci. Numer. Simul. 2018, 60, 72–91. [Google Scholar]
- Jarad, F.; Abdeljawad, T. Generalized fractional derivatives and Laplace transform. Discrete Contin. Dyn. Syst. Ser. S 2020, 13, 709–722. [Google Scholar] [CrossRef] [Green Version]
- Xu, J.; Jiang, J.; O’Regan, D. Positive solutions for a class of p-Laplacian Hadamard fractional-order three-point boundary value problems. Mathematics 2020, 8, 308. [Google Scholar] [CrossRef] [Green Version]
- Saeed, A.M.; Almalahi, M.A.; Abdo, M.S. Explicit iteration and unique solution for ϕ-Hilfer type fractional langevin equations. AIMS Math. 2022, 7, 3456–3476. [Google Scholar]
- Ladde, G.S.; Lakshmikantham, V.; Vatsala, A.S. Monotone Iterative Techniques for Nonlinear Differential Equations; Pitman: Boston, MA, USA, 1985. [Google Scholar]
- Nieto, J.J. An abstract monotone iterative technique. Nonlinear Anal. 1997, 28, 1923–1933. [Google Scholar] [CrossRef]
- Al-Refai, M.; Ali Hajji, M. Monotone iterative sequences for nonlinear boundary value problems of fractional order. Nonlinear Anal. 2011, 11, 3531–3539. [Google Scholar] [CrossRef]
- Derbazi, C.; Baitiche, Z.; Benchohra, M.; Cabada, A. Initial value problem for nonlinear fractional differential equations with ψ-Caputo derivative via monotone iterative technique. Axioms 2020, 9, 57. [Google Scholar] [CrossRef]
- Baitiche, Z.; Derbazi, C.; Wang, G. Monotone iterative method for nonlinear fractional p-laplacian differential equation in terms of ψ-Caputo fractional derivative equipped with a new class of nonlinear boundary conditions. Math. Methods Appl. Sci. 2021, 45, 967–976. [Google Scholar] [CrossRef]
- Lin, X.; Zhao, Z. Iterative technique for a third-order differential equation with three-point nonlinear boundary value conditions. Electron. J. Qual. Theory Differ. Equ. 2016, 12, 10. [Google Scholar] [CrossRef]
- Wang, G.; Sudsutad, W.; Zhang, L.; Tariboon, J. Monotone iterative technique for a nonlinear fractional q-difference equation of Caputo type. Adv. Differ. Equ. 2016, 211, 11. [Google Scholar] [CrossRef] [Green Version]
- Wei, Z.; Li, Q.; Che, J. Initial value problems for fractional differential equations involving Riemann-Liouville sequential fractional derivative. J. Math. Anal. Appl. 2010, 367, 260–272. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S. Monotone iterative method for initial value problem involving Riemann-Liouville fractional derivatives. Nonlinear Anal. 2009, 71, 2087–2093. [Google Scholar] [CrossRef]
- Abbas, M.I. On the nonlinear sequential ψ–Hilfer fractional differential equations. Int. J. Math. Anal. 2020, 14, 77–90. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baitiche, Z.; Derbazi, C.; Benchohra, M.; Nieto, J.J. Monotone Iterative Technique for a New Class of Nonlinear Sequential Fractional Differential Equations with Nonlinear Boundary Conditions under the ψ-Caputo Operator. Mathematics 2022, 10, 1173. https://doi.org/10.3390/math10071173
Baitiche Z, Derbazi C, Benchohra M, Nieto JJ. Monotone Iterative Technique for a New Class of Nonlinear Sequential Fractional Differential Equations with Nonlinear Boundary Conditions under the ψ-Caputo Operator. Mathematics. 2022; 10(7):1173. https://doi.org/10.3390/math10071173
Chicago/Turabian StyleBaitiche, Zidane, Choukri Derbazi, Mouffak Benchohra, and Juan J. Nieto. 2022. "Monotone Iterative Technique for a New Class of Nonlinear Sequential Fractional Differential Equations with Nonlinear Boundary Conditions under the ψ-Caputo Operator" Mathematics 10, no. 7: 1173. https://doi.org/10.3390/math10071173
APA StyleBaitiche, Z., Derbazi, C., Benchohra, M., & Nieto, J. J. (2022). Monotone Iterative Technique for a New Class of Nonlinear Sequential Fractional Differential Equations with Nonlinear Boundary Conditions under the ψ-Caputo Operator. Mathematics, 10(7), 1173. https://doi.org/10.3390/math10071173