Invariant Finite-Difference Schemes for Plane One-Dimensional MHD Flows That Preserve Conservation Laws
Abstract
:1. Introduction
2. Conservative Schemes for MHD Equations with Finite Conductivity
2.1. Conservative Samarskiy–Popov Schemes for System (2)
2.2. Invariance of Samarskiy–Popov Schemes
2.3. Conservation Laws Possessed by the Samarskiy–Popov Scheme
3. Generalizations of the Samarskiy–Popov Schemes for MHD Equations
3.1. The Case of Finite Conductivity
- If and is arbitrary, then the admitted Lie algebra isIn case , there are two additional generators that are admitted, namelyThere are also two more conservation laws in the latter case (see Table 2). Additional conservation laws do not occur for any other forms of the function .
- If and is arbitrary then the admitted Lie algebra isAdditional conservation laws do not occur for any specific .
# | Conservation Laws of the System | Conservation Laws of the Scheme | Physics Interpretation |
---|---|---|---|
1 | Mass conservation | ||
2 | Magnetic flux conservation | ||
3 | Magnetic flux conservation | ||
4 | Momentum conservation | ||
5 † | Momentum conservation | ||
6 † | Momentum conservation | ||
7 | Center of mass law | ||
8 † | Center of mass law | ||
9 † | Center of mass law | ||
10 | Energy conservation | ||
11 † | Angular momentum conservation | ||
, | |||
12 | Unknown | ||
13 | Unknown |
3.2. The Case of Infinite Conductivity
3.2.1. Conservation of Angular Momentum and Energy
3.2.2. Conservation of the Entropy along the Pathlines
3.2.3. On Specific Symmetries and Conservation Laws in the Case of Isentropic Flows ()
- If , the admitted Lie algebra is
- In case , the admitted Lie algebra isIn case , there are two additional generators, namelyHere, , , and are arbitrary functions of s.
- (a)
- In case , there is an additional conservation law that corresponds to the generator
- (b)
- Case .
- The conservation law corresponding to the generator isThe latter follows from system (36). When conductivity of the medium tends to infinity, the phenomenon of frozen-in magnetic field is observed (see, e.g., [41]). In this case, in the absence of the longitudinal component of the magnetic field, the quantity , which is proportional to the magnetic pressure, turns out to be preserved along the pathlines.
- In case , the admitted generator
4. Numerical Experiments
- The bunch is decelerated using a transverse magnetic field at a relatively low voltage in the circuit.
- The bunch is decelerated using a transverse magnetic field at a high voltage in the circuit.
- A rather strong longitudinal magnetic field is added to the previous case. (Calculations show that a weak longitudinal magnetic field has little effect on the experimental results.)
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dorodnitsyn, V.A.; Kaptsov, E.I.; Kozlov, R.V.; Meleshko, S.V.; Mukdasanit, P. Plane one-dimensional MHD flows: Symmetries and conservation laws. Int. J. Non-Linear Mech. 2022, 140, 103899. [Google Scholar] [CrossRef]
- Gridnev, N. Study of the magnetohydrodynamics equations’ group properties and invariant solutions. J. Appl. Mech. Tech. Phys. 1968, 6, 103–107. (In Russian) [Google Scholar]
- Dorodnitsyn, V.A. On invariant solutions of one-dimensional nonstationary magnetohydrodynamics with finite conductivity. Keldysh Inst. Prepr. 1976, 143. Available online: https://library.keldysh.ru/preprint.asp?id=1976-143 (accessed on 28 February 2022). (In Russian).
- Rogers, C. Invariant Transformations in Non-Steady Gasdynamics and Magneto-Gasdynamics. Zeit Angew. Math. Phys. 1969, 20, 370–382. [Google Scholar] [CrossRef]
- Ibragimov, N.H. (Ed.) CRC Handbook of Lie Group Analysis of Differential Equations; CRC Press: Boca Raton, FL, USA, 1995; Volume 2. [Google Scholar]
- Oliveri, F.; Speciale, M.P. Exact solutions to the ideal magneto-gas-dynamics equations through Lie group analysis and substitution principles. J. Phys. A Math. Gen. 2005, 38, 8803–8820. [Google Scholar] [CrossRef]
- Picard, P. Some exact solutions of the ideal MHD equations through symmetry reduction. J. Math. Anal. Appl. 2008, 337, 360–385. [Google Scholar] [CrossRef] [Green Version]
- Golovin, S. Regular partially invariant solutions of defect 1 of the equations of ideal magnetohydrodynamics. J. Appl. Mech. Tech. Phys. 2019, 50, 171–180. [Google Scholar] [CrossRef]
- Golovin, S. Natural curvilinear coordinates for ideal MHD equations. Non-stationary flows with constant total pressure. Phys. Lett. Sect. A Gen. At. Solid State Phys. 2011, 375, 283–290. [Google Scholar] [CrossRef] [Green Version]
- Golovin, S.; Sesma, L. Exact Solutions of Stationary Equations of Ideal Magnetohydrodynamics in the Natural Coordinate System. J. Appl. Mech. Tech. Phys. 2019, 60, 234–247. [Google Scholar] [CrossRef]
- Toro, E.F. Riemann Solvers and Numerical Methods for Fluid Dynamics; Springer: Berlin/Heidelberg, Germany, 1997. [Google Scholar]
- Samarskiy, A.A.; Popov, Y.P. Completely conservative difference schemes for the equations of magneto-hydrodynamics. USSR Comput. Math. Math. Phys. 1970, 10, 233–243. [Google Scholar]
- Samarskii, A.A.; Popov, Y.P. Difference Methods for Solving Problems of Gas Dynamics; Nauka: Moscow, Russian, 1980. (In Russian) [Google Scholar]
- Falle, S.A.E.G.; Komissarov, S.S.; Joarder, P. A multidimensional upwind scheme for magnetohydrodynamics. Mon. Not. R. Astron. Soc. 1998, 297, 265–277. [Google Scholar] [CrossRef] [Green Version]
- Powell, K.G.; Roe, P.L.; Linde, T.J.; Gombosi, T.I.; De Zeeuw, D.L. A Solution-Adaptive Upwind Scheme for Ideal Magnetohydrodynamics. J. Comput. Phys. 1999, 154, 284–309. [Google Scholar] [CrossRef]
- Yakovlev, S.; Xu, L.; Li, F. Locally divergence-free central discontinuous Galerkin methods for ideal MHD equations. J. Comput. Sci. 2013, 4, 80–91. [Google Scholar] [CrossRef]
- Yang, Y.; Feng, X.S.; Jiang, C.W. A high-order CESE scheme with a new divergence-free method for MHD numerical simulation. J. Comput. Phys. 2017, 349, 561–581. [Google Scholar] [CrossRef]
- Hirabayashi, K.; Hoshino, M.; Amano, T. A new framework for magnetohydrodynamic simulations with anisotropic pressure. J. Comput. Phys. 2016, 327, 851–872. [Google Scholar] [CrossRef] [Green Version]
- Ryu, D.; Jones, T.W. Numerical Magnetohydrodynamics in Astrophysics: Algorithm and Tests for One-dimensional Flow. ApJL 1995, 442, 228. [Google Scholar] [CrossRef]
- Noether, E. Invariante Variationsprobleme. Konigliche Gesellschaft der Wissenschaften zu Gottingen, Nachrichten, Mathematisch-Physikalische Klasse Heft 2. Transp. Theory Stat. Phys. 1971, 1, 183–207. [Google Scholar]
- Ibragimov, N.H. Transformation Groups Applied to Mathematical Physics; Reidel: Boston, MA, USA, 1985. [Google Scholar]
- Olver, P.J. Applications of Lie Groups to Differential Equations; Springer: New York, NY, USA, 1986. [Google Scholar]
- Bluman, G.W.; Anco, S.C. Symmetry and Integration Methods for Differential Equations; Springer: New York, NY, USA, 2002; p. 422. [Google Scholar]
- Kreyszig, E. Advanced Engineering Mathematics; Wiley: New York, NY, USA, 1983. [Google Scholar]
- Dorodnitsyn, V.A. Transformation groups in net spaces. J. Sov. Math. 1991, 55, 1490–1517. [Google Scholar] [CrossRef]
- Maeda, S. Extension of discrete Noether theorem. Math. Jpn. 1985, 26, 85–90. [Google Scholar]
- Maeda, S. The similarity method for difference equations. J. Inst. Math. Appl. 1987, 38, 129–134. [Google Scholar] [CrossRef]
- Dorodnitsyn, V.A. Applications of Lie Groups to Difference Equations; CRC Press: Boca Raton, FL, USA, 2011. [Google Scholar]
- Dorodnitsyn, V.A.; Kozlov, R.V.; Winternitz, P. Continuous symmetries of Lagrangians and exact solutions of discrete equations. J. Math. Phys. 2004, 45, 336–359. [Google Scholar] [CrossRef] [Green Version]
- Dorodnitsyn, V.A.; Kaptsov, E.I.; Kozlov, R.V.; Winternitz, P. The adjoint equation method for constructing first integrals of difference equations. J. Phys. A Math. Theor. 2015, 48, 055202. [Google Scholar] [CrossRef]
- Bourlioux, A.; Cyr-Gagnon, C.; Winternitz, P. Difference schemes with point symmetries and their numerical tests. J. Phys. A Math. Gen. 2006, 39, 6877–6896. [Google Scholar] [CrossRef]
- Bourlioux, A.; Rebelo, R.; Winternitz, P. Symmetry Preserving Discretization of SL(2, ℝ) Invariant Equations. J. Nonlinear Math. Phys. 2007, 15, 362–372. [Google Scholar] [CrossRef] [Green Version]
- Dorodnitsyn, V.A.; Kaptsov, E.I. Shallow water equations in Lagrangian coordinates: Symmetries, conservation laws and its preservation in difference models. Commun. Nonlinear. Sci. Numer. Simulat. 2020, 89, 105343. [Google Scholar] [CrossRef]
- Dorodnitsyn, V.A.; Kaptsov, E.I.; Meleshko, S.V. Symmetries, conservation laws, invariant solutions and difference schemes of the one-dimensional Green-Naghdi equations. J. Nonlinear Math. Phys. 2020, Submitted. [Google Scholar] [CrossRef]
- Dorodnitsyn, V.A.; Kaptsov, E.I. Discrete shallow water equations preserving symmetries and conservation laws. J. Math. Phys. 2021, 62, 083508. [Google Scholar] [CrossRef]
- Kaptsov, E.I.; Dorodnitsyn, V.A.; Meleshko, S.V. Conservative invariant finite-difference schemes for the modified shallow water equations in Lagrangian coordinates. Stud. Appl. Math. 2021, submitted. [Google Scholar]
- Dorodnitsyn, V.A.; Kozlov, R.; Meleshko, S.V. One-dimensional gas dynamics equations of a polytropic gas in Lagrangian coordinates: Symmetry classification, conservation laws, difference schemes. Commun. Nonlinear. Sci. Numer. Simulat. 2019, 74, 201–218. [Google Scholar] [CrossRef] [Green Version]
- Kozlov, R. Conservative difference schemes for one-dimensional flows of polytropic gas. Commun. Nonlinear. Sci. Numer. Simulat. 2019, 78, 104864. [Google Scholar] [CrossRef] [Green Version]
- Dorodnitsyn, V.A.; Kozlov, R.V.; Meleshko, S.V. One-dimensional flows of a polytropic gas: Lie group classification, conservation laws, invariant and conservative difference schemes. In Symmetries and Applications of Differential Equations: In Memory of Nail H. Ibragimov (1939–2018); Albert, C.J.L., Gazizov, R.K., Eds.; Nonlinear Physical Science; Springer: Singapore, 2021. [Google Scholar]
- Rojdestvenskiy, B.L.; Yanenko, N.N. Systems of Quasilinear Equations and Their Applications to Gas Dynamics; Nauka: Moscow, Russian, 1968. (In Russian) [Google Scholar]
- Kulikovskiy, A.G.; Lyubimov, G.A. Magnetohydrodynamics; International Series in Physics, Reading, Mass; Addison-Wesley: Boston, MA, USA, 1965. [Google Scholar]
- Danilova, G.V. Dorodnitsyn, V.A.; Kurdyumov, S.P.; Popov, Y.P.; Smarskiy, A.A.; Tsaryova, L.S. Interaction of a plasma clot with a magnetic field in a railgun channel. Keldysh Inst. Prepr. 1973, 62. Available online: https://library.keldysh.ru/preprint.asp?id=1973-63 (accessed on 28 February 2022). (In Russian).
- Samarskiy, A.A.; Dorodnitsyn, V.A.; Kurdyumov, S.P.; Popov, Y.P. Formation of T-layers in the process of plasma deceleration by a magnetic field. Dokl. Akad. Nauk SSSR 1974, 216, 1254–1257. (In Russian) [Google Scholar]
- Degtyarev, L.M.; Favorskii, A.P. A flow variant of the sweep method. USSR Comput. Math. Math. Phys. 1968, 8, 252–261. [Google Scholar] [CrossRef]
# | Conservation Laws of the System | Conservation Laws of the Scheme | Physics Interpretation |
---|---|---|---|
1 | Mass conservation | ||
2 | Magnetic flux conservation | ||
3 | Momentum conservation | ||
4 | Center of mass law | ||
5 | Energy conservation | ||
6 | Unknown |
# | Conservation Laws of the System | Conservation Laws of the Scheme | Physics Interpretation |
---|---|---|---|
1 | Mass conservation | ||
2 † | Magnetic flux conservation | ||
3 † | Magnetic flux conservation | ||
4 | Momentum conservation | ||
5 † | Momentum conservation | ||
6 † | Momentum conservation | ||
7 | Center of mass law | ||
8 † | Center of mass law | ||
9 † | Center of mass law | ||
10 | Energy conservation | ||
11 † | Angular momentum conservation | ||
12 | Entropy conservation |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dorodnitsyn, V.; Kaptsov, E. Invariant Finite-Difference Schemes for Plane One-Dimensional MHD Flows That Preserve Conservation Laws. Mathematics 2022, 10, 1250. https://doi.org/10.3390/math10081250
Dorodnitsyn V, Kaptsov E. Invariant Finite-Difference Schemes for Plane One-Dimensional MHD Flows That Preserve Conservation Laws. Mathematics. 2022; 10(8):1250. https://doi.org/10.3390/math10081250
Chicago/Turabian StyleDorodnitsyn, Vladimir, and Evgeniy Kaptsov. 2022. "Invariant Finite-Difference Schemes for Plane One-Dimensional MHD Flows That Preserve Conservation Laws" Mathematics 10, no. 8: 1250. https://doi.org/10.3390/math10081250
APA StyleDorodnitsyn, V., & Kaptsov, E. (2022). Invariant Finite-Difference Schemes for Plane One-Dimensional MHD Flows That Preserve Conservation Laws. Mathematics, 10(8), 1250. https://doi.org/10.3390/math10081250