First-Order Approximate Mei Symmetries and Invariants of the Lagrangian
Abstract
:1. Introduction
2. The Mei Symmetries
3. Approximate Mei Symmetries
4. Example
4.1. The Mei Symmetries of DHO
4.2. Approximate Mei Symmetries of DHO
4.3. Approximate Mei Invariants of DHO
4.4. Comparison between Mei Symmetries of the Hamiltonian and the Lagrangian
5. Conclusions
- is common in both, i.e., related to the Hamiltonian and the Lagrangian;
- A minor difference in approximate part of is noted;
- Mei symmetries , , , and of both sets are completely different from each other. These new Mei symmetries related to the Lagrangian lead to new Mei invariants of DHO;
- Approximate Mei symmetries and invariants in both formalisms (Lagrangian and Hamiltonian) are related as
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ODEs | Ordinary differential equations |
PDEs | Partial differential equations |
DHO | Damped harmonic oscillator |
References
- Noether, E. Invariante variations problems. Transp. Theo. Stat. Phys. 1971, 1, 186–207. [Google Scholar] [CrossRef] [Green Version]
- Mei, F.-X. Form invariance of Lagrange system. J. Beijing Inst. Technol. 2000, 9, 120–124. [Google Scholar]
- Mei, F.-X. Form invariance of Appell equations. Chin. Phys. 2001, 10, 177. [Google Scholar]
- Wang, S.-Y.; Mei, F.-X. Form invariance and Lie symmetry of equations of non-holonomic systems. Chin. Phys. 2002, 11, 5. [Google Scholar]
- Fang, J.-H. Mei symmetry and Lie symmetry of the rotational relativistic variable mass system. Commun. Theor. Phys. 2003, 40, 269. [Google Scholar]
- Jiang, W.A.; Liu, K.; Xia, Z.W.; Chen, M. Mei symmetry and new conserved quantities for non-material volumes. Acta Mech. 2018, 229, 3781–3786. [Google Scholar] [CrossRef]
- Zhai, X.H.; Zhang, Y. Mei symmetry of time-scales Euler-Lagrange equations and its relation to Noether symmetry. Acta Phys. Pol. A 2019, 136, 439–440. [Google Scholar] [CrossRef]
- Zhai, X.H.; Zhang, Y. Mei symmetry and new conserved quantities of time-scale Birkhoff’s equations. Complexity 2020, 2020, 1691760. [Google Scholar] [CrossRef]
- Baikov, V.A.; Gazizov, R.K.; Ibragimov, N.H. Approximate symmetries. Matematicheskii Sbornik 1988, 178, 435–450. [Google Scholar] [CrossRef]
- Baikov, V.A.; Gazizov, R.K.; Ibragimov, N.K. Perturbation methods in group analysis. J. Sov. Math. 1991, 55, 1450–1490. [Google Scholar] [CrossRef]
- Feroze, T.; Kara, A.H. Group theoretic methods for approximate invariants and Lagrangian’s for some classes of y″ + ϵF(t)y′ + y = f(y,y′). Int. J. Non-Linear Mech. 2002, 37, 275–280. [Google Scholar] [CrossRef]
- Ali, F.; Feroze, T. Approximate Noether symmetries from geodetic Lagrangian for plane symmetric spacetimes. Int. J. Geom. Methods Mod. Phys. 2015, 12, 1550124. [Google Scholar] [CrossRef] [Green Version]
- Paliathanasis, A.; Jamal, S. Approximate Noether symmetries and collineations for regular perturbative Lagrangians. J. Geom. Phys. 2018, 124, 300–310. [Google Scholar] [CrossRef]
- Kausar, U.; Feroze, T. Approximate Mei Symmetries and Invariants of the Hamiltonian. Mathematics 2021, 9, 2910. [Google Scholar] [CrossRef]
- Gorgane, M.; Oliveri, F. Approximate Noether smmetries of perturbed Lagrangians and approximate conservation laws. Mathematics 2021, 9, 2900. [Google Scholar] [CrossRef]
- Denman, H.H. Approximate invariants and Lagrangians for autonomous, weakly non-linear systems. Int. J. Non-Linear Mech. 1994, 29, 409–419. [Google Scholar] [CrossRef]
- Denman, H.H. Approximate invariants and Lagrangians for autonomous, weakly non-linear systems—II. Linear Friction. Int. J. Non-Linear Mech. 1998, 33, 301–314. [Google Scholar] [CrossRef]
- Denman, H.H. Approximate invariants and Lagrangians for some autonomous, non-linear dissipative systems: III. Time dependence. Int. J. Non-Linear Mech. 2000, 35, 385–392. [Google Scholar] [CrossRef]
Mei Symmetries of the Hamiltonian | Mei Symmetries of the Lagrangian |
---|---|
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kausar, U.; Feroze, T. First-Order Approximate Mei Symmetries and Invariants of the Lagrangian. Mathematics 2022, 10, 649. https://doi.org/10.3390/math10040649
Kausar U, Feroze T. First-Order Approximate Mei Symmetries and Invariants of the Lagrangian. Mathematics. 2022; 10(4):649. https://doi.org/10.3390/math10040649
Chicago/Turabian StyleKausar, Umara, and Tooba Feroze. 2022. "First-Order Approximate Mei Symmetries and Invariants of the Lagrangian" Mathematics 10, no. 4: 649. https://doi.org/10.3390/math10040649
APA StyleKausar, U., & Feroze, T. (2022). First-Order Approximate Mei Symmetries and Invariants of the Lagrangian. Mathematics, 10(4), 649. https://doi.org/10.3390/math10040649