The Impact of Interregional Collaboration on Multistage R&D Productivity and Their Interregional Gaps in Chinese Provinces
Abstract
:1. Introduction
2. Literature Review and Hypotheses Development
2.1. Previous Literature
2.2. Conceptual Framework and Hypotheses Development
2.2.1. Conceptual Framework for R&D Productivity
2.2.2. Hypotheses Development
3. Methods
3.1. Network Slacks-Based Measure (SBM)
3.2. The Model
3.3. Data
4. Results and Discussion
4.1. Spatial Patterns of R&D Productivity and Interregional Collaboration in China
4.2. Econometric Analysis
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Van Oort, F.G. Urban Growth and Innovation: Spatially Bounded Externalities in the Netherlands; Routledge: London, UK, 2017. [Google Scholar]
- Broekel, T.; Brenner, T.; Buerger, M. An investigation of the relation between cooperation intensity and the innovative success of German regions. Spat. Econ. Anal. 2015, 10, 52–78. [Google Scholar] [CrossRef]
- Divella, M. Cooperation linkages and technological capabilities development across firms. Reg. Stud. 2017, 51, 1494–1506. [Google Scholar] [CrossRef]
- Choi, J.; Choi, J.Y. The effects of R&D cooperation on innovation performance in the knowledge-intensive business services industry: Focusing on the moderating effect of the R&D-dedicated labor ratio. Technol. Anal. Strateg. Manag. 2021, 33, 396–413. [Google Scholar]
- Marrocu, E.; Paci, R.; Usai, S. Proximity, networking and knowledge production in Europe: What lessons for innovation policy? Technol. Forecast. Soc. Chang. 2013, 80, 1484–1498. [Google Scholar] [CrossRef]
- Paci, R.; Usai, S. Knowledge flows across European regions. Ann. Reg. Sci. 2009, 43, 669–690. [Google Scholar] [CrossRef] [Green Version]
- Hintringer, T.M.; Bobek, V.; Milost, F.; Horvat, T. Innovation as a Determinant of Growth in Outperforming Emerging Markets: An Analysis of South Korea. Sustainability 2021, 13, 10241. [Google Scholar] [CrossRef]
- Cincera, M.; De La Potterie, B.V.P. International R&D spillovers: A survey. Cah. Econ. De Brux. 2001, 169, 3–32. [Google Scholar]
- Varga, A.; Pontikakis, D.; Chorafakis, G. Metropolitan Edison and cosmopolitan Pasteur? Agglomeration and interregional research network effects on European R&D productivity. J. Econ. Geogr. 2014, 14, 229–263. [Google Scholar]
- Jaffe, A.B.; Trajtenberg, M.; Henderson, R. Geographic localization of knowledge spillovers as evidenced by patent citations. Q. J. Econ. 1993, 108, 577–598. [Google Scholar] [CrossRef]
- Maurseth, P.B.; Verspagen, B. Knowledge spillovers in Europe: A patent citations analysis. Scand. J. Econ. 2002, 104, 531–545. [Google Scholar] [CrossRef]
- Ponds, R.; Oort, F.V.; Frenken, K. Innovation, spillovers and university–industry collaboration: An extended knowledge production function approach. J. Econ. Geogr. 2009, 10, 231–255. [Google Scholar] [CrossRef]
- Boschma, R. Proximity and innovation: A critical assessment. Reg. Stud. 2005, 39, 61–74. [Google Scholar] [CrossRef]
- Maggioni, M.A.; Uberti, T.E. Networks and geography in the economics of knowledge flows. Qual. Quant. 2011, 45, 1031–1051. [Google Scholar] [CrossRef]
- Massard, N.; Mehier, C. Proximity and innovation through an ‘accessibility to knowledge’lens. Reg. Stud. 2009, 43, 77–88. [Google Scholar] [CrossRef] [Green Version]
- Gui, Q.; Liu, C.; Du, D. International Knowledge Flows and the Role of Proximity. Growth Chang. 2018, 49, 532–547. [Google Scholar] [CrossRef]
- Breschi, S.; Lissoni, F. Mobility of Inventors and the Geography of Knowledge Spillovers: New Evidence on US Data; Università commerciale Luigi Bocconi: Milan, Italy, 2006. [Google Scholar]
- Crescenzi, R.; Rodríguez-Pose, A. Innovation and Regional Growth in the European Union; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2011. [Google Scholar]
- Tödtling, F.; Trippl, M. One size fits all?: Towards a differentiated regional innovation policy approach. Res. Policy 2005, 34, 1203–1219. [Google Scholar] [CrossRef]
- Grillitsch, M.; Nilsson, M. Innovation in peripheral regions: Do collaborations compensate for a lack of local knowledge spillovers? Ann. Reg. Sci. 2015, 54, 299–321. [Google Scholar] [CrossRef] [Green Version]
- Lu, H.; Du, D.; Qin, X. Assessing the Dual Innovation Capability of National Innovation System: Empirical Evidence from 65 Countries. Systems 2022, 10, 23. [Google Scholar] [CrossRef]
- Fitjar, R.D.; Rodríguez-Pose, A. When local interaction does not suffice: Sources of firm innovation in urban Norway. In Regional Development and Proximity Relations; Edward Elgar Publishing: Cheltenham, UK, 2014. [Google Scholar]
- Trippl, M. Regional innovation systems and knowledge-sourcing activities in traditional industries—evidence from the Vienna food sector. Environ. Plan. A 2011, 43, 1599–1616. [Google Scholar] [CrossRef]
- García-Valderrama, T.; Mulero-Mendigorri, E. Content validation of a measure of R&D effectiveness. RD Manag. 2005, 35, 311–331. [Google Scholar]
- Dosi, G.; Freeman, C.; Nelson, R.; Silverberg, G.; Soete, L. Technical Change and Economic Theory; Pinter London: London, UK, 1988; Volume 988. [Google Scholar]
- Hansen, M.T.; Birkinshaw, J. The innovation value chain. Harv. Bus. Rev. 2007, 85, 121. [Google Scholar] [PubMed]
- Foley, H.C.; Freihaut, J.; Hallacher, P.; Knapp, C. The greater Philadelphia innovation cluster for energy-efficient buildings: A new model for public-private partnerships. Res.-Technol. Manag. 2011, 54, 42–48. [Google Scholar] [CrossRef]
- Bathelt, H.; Malmberg, A.; Maskell, P. Clusters and knowledge: Local buzz, global pipelines and the process of knowledge creation. Prog. Hum. Geogr. 2004, 28, 31–56. [Google Scholar] [CrossRef]
- Singh, J. Collaborative networks as determinants of knowledge diffusion patterns. Manag. Sci. 2005, 51, 756–770. [Google Scholar] [CrossRef] [Green Version]
- Graf, H. Gatekeepers in regional networks of innovators. Camb. J. Econ. 2011, 35, 173–198. [Google Scholar] [CrossRef] [Green Version]
- Moodysson, J. Principles and practices of knowledge creation: On the organization of “buzz” and “pipelines” in life science communities. Econ. Geogr. 2008, 84, 449–469. [Google Scholar] [CrossRef]
- Powell, W.W.; Koput, K.W.; Smith-Doerr, L. Interorganizational collaboration and the locus of innovation: Networks of learning in biotechnology. Adm. Sci. Q. 1996, 41, 116–145. [Google Scholar] [CrossRef] [Green Version]
- Di Cagno, D.; Fabrizi, A.; Meliciani, V.; Wanzenböck, I. The impact of relational spillovers from joint research projects on knowledge creation across European regions. Technol. Forecast. Soc. Chang. 2016, 108, 83–94. [Google Scholar] [CrossRef]
- De Noni, I.; Ganzaroli, A.; Orsi, L. The impact of intra-and inter-regional knowledge collaboration and technological variety on the knowledge productivity of European regions. Technol. Forecast. Soc. Chang. 2017, 117, 108–118. [Google Scholar] [CrossRef]
- Goyal, S. Connections: An Introduction to the Economics of Networks; Princeton University Press: Princeton, NJ, USA, 2012. [Google Scholar]
- Uzzi, B. The sources and consequences of embeddedness for the economic performance of organizations: The network effect. Am. Sociol. Rev. 1996, 61, 674–698. [Google Scholar] [CrossRef]
- Broekel, T. Collaboration intensity and regional innovation efficiency in Germany—A conditional efficiency approach. Ind. Innov. 2012, 19, 155–179. [Google Scholar] [CrossRef]
- Kesteloot, K.; Veugelers, R. Stable R&D cooperation with spillovers. J. Econ. Manag. Strategy 1995, 4, 651–672. [Google Scholar]
- Cantner, U.; Meder, A. Technological proximity and the choice of cooperation partner. J. Econ. Interact. Coord. 2007, 2, 45–65. [Google Scholar] [CrossRef]
- Gao, X.; Zhai, K. Spatial mechanisms of regional innovation mobility in China. Soc. Indic. Res. 2021, 156, 247–270. [Google Scholar] [CrossRef]
- Hong, J.; Zhu, R.; Hou, B.; Wang, H. Academia-industry collaboration and regional innovation convergence in China. Knowl. Manag. Res. Pract. 2019, 17, 396–407. [Google Scholar] [CrossRef]
- Fan, F.; Lian, H.; Wang, S. Can regional collaborative innovation improve innovation efficiency? An empirical study of Chinese cities. Growth Chang. 2020, 51, 440–463. [Google Scholar]
- Ganotakis, P.; Love, J.H. The innovation value chain in new technology-based firms: Evidence from the UK. J. Prod. Innov. Manag. 2012, 29, 839–860. [Google Scholar] [CrossRef]
- Fitjar, R.D.; Rodríguez-Pose, A. Firm collaboration and modes of innovation in Norway. Res. Policy 2013, 42, 128–138. [Google Scholar] [CrossRef]
- Singh, J.; Fleming, L. Lone inventors as sources of breakthroughs: Myth or reality? Manag. Sci. 2010, 56, 41–56. [Google Scholar] [CrossRef]
- Powell, W.W.; Giannella, E. Collective invention and inventor networks. In Handbook of the Economics of Innovation; Elsevier: Amsterdam, The Netherlands, 2010; Volume 1, pp. 575–605. [Google Scholar]
- D’Este, P.; Guy, F.; Iammarino, S. Shaping the formation of university–industry research collaborations: What type of proximity does really matter? J. Econ. Geogr. 2013, 13, 537–558. [Google Scholar] [CrossRef] [Green Version]
- Belussi, F.; Sammarra, A.; Sedita, S.R. Learning at the boundaries in an “Open Regional Innovation System”: A focus on firms’ innovation strategies in the Emilia Romagna life science industry. Res. Policy 2010, 39, 710–721. [Google Scholar] [CrossRef]
- Timmermans, B.; Boschma, R. The effect of intra-and inter-regional labour mobility on plant performance in Denmark: The significance of related labour inflows. J. Econ. Geogr. 2014, 14, 289–311. [Google Scholar] [CrossRef] [Green Version]
- Maietta, O.W. Determinants of university–firm R&D collaboration and its impact on innovation: A perspective from a low-tech industry. Res. Policy 2015, 44, 1341–1359. [Google Scholar]
- Schartinger, D.; Rammer, C.; Fröhlich, J. Knowledge interactions between universities and industry in Austria: Sectoral patterns and determinants. In Innovation, Networks, and Knowledge Spillovers; Springer: Berlin/Heidelberg, Germany, 2006; pp. 135–166. [Google Scholar]
- Owen-Smith, J.; Powell, W.W. Knowledge networks as channels and conduits: The effects of spillovers in the Boston biotechnology community. Organ. Sci. 2004, 15, 5–21. [Google Scholar] [CrossRef] [Green Version]
- Bonaccorsi, A. European competitiveness in information technology and long-term scientific performance. Sci. Public Policy 2011, 38, 521–540. [Google Scholar] [CrossRef]
- Makri, M.; Hitt, M.A.; Lane, P.J. Complementary technologies, knowledge relatedness, and invention outcomes in high technology mergers and acquisitions. Strateg. Manag. J. 2010, 31, 602–628. [Google Scholar] [CrossRef]
- Qiu, S.; Liu, X.; Gao, T. Do emerging countries prefer local knowledge or distant knowledge? Spillover effect of university collaborations on local firms. Res. Policy 2017, 46, 1299–1311. [Google Scholar]
- Asheim, B.T.; Boschma, R.; Cooke, P. Constructing regional advantage: Platform policies based on related variety and differentiated knowledge bases. Reg. Stud. 2011, 45, 893–904. [Google Scholar] [CrossRef]
- Breschi, S.; Lissoni, F. Mobility of skilled workers and co-invention networks: An anatomy of localized knowledge flows. J. Econ. Geogr. 2009, 9, 439–468. [Google Scholar] [CrossRef] [Green Version]
- Todorova, G.; Durisin, B. Absorptive capacity: Valuing a reconceptualization. Acad. Manag. Rev. 2007, 32, 774–786. [Google Scholar] [CrossRef]
- Griliches, Z. Issues in assessing the contribution of research and development to productivity growth. Bell J. Econ. 1979, 10, 92–116. [Google Scholar] [CrossRef]
- Griliches, Z. Patent Statistics as Economic Indicators: A Survey; University of Chicago Press: Chicago, IL, USA, 1998; pp. 287–343. [Google Scholar]
- Ciccone, A.; Hall, R.E. Productivity and the Density of Economic Activity; 0898-2937; National Bureau of Economic Research: Cambridge, MA, USA, 1993. [Google Scholar]
- Bellemare, M.F.; Masaki, T.; Pepinsky, T.B. Lagged explanatory variables and the estimation of causal effect. J. Politics 2017, 79, 949–963. [Google Scholar] [CrossRef]
- Gui, Q.; Liu, C.; Du, D. Does network position foster knowledge production? Evidence from international scientific collaboration network. Growth Chang. 2018, 49, 594–611. [Google Scholar]
- Phelps, C.; Heidl, R.; Wadhwa, A. Knowledge, networks, and knowledge networks: A review and research agenda. J. Manag. 2012, 38, 1115–1166. [Google Scholar] [CrossRef] [Green Version]
- Fan, H. A Hypothesis on Effective Demand Size, R&D Expenditure and National Innovation Capacity. Econ. Res. J. 2007, 3, 34–45. [Google Scholar]
- Aghion, P.; Blundell, R.; Griffith, R.; Howitt, P.; Prantl, S. The effects of entry on incumbent innovation and productivity. Rev. Econ. Stat. 2009, 91, 20–32. [Google Scholar] [CrossRef] [Green Version]
- Hewitt-Dundas, N.; Roper, S. Output additionality of public support for innovation: Evidence for Irish manufacturing plants. Eur. Plan. Stud. 2010, 18, 107–122. [Google Scholar] [CrossRef]
- Engelbrecht, H.-J. Human capital and international knowledge spillovers in TFP growth of a sample of developing countries: An exploration of alternative approaches. Appl. Econ. 2002, 34, 831–841. [Google Scholar] [CrossRef]
- Qiu, J. China goes back to basics on research funding: Core science gets budget boost in a bid to change research culture and increase innovation. Nature 2014, 507, 148–150. [Google Scholar] [CrossRef] [Green Version]
- Hong, J.; Feng, B.; Wu, Y.; Wang, L. Do government grants promote innovation efficiency in China’s high-tech industries? Technovation 2016, 57, 4–13. [Google Scholar] [CrossRef]
- Hausman, J.A. Specification tests in econometrics. Econom. J. Econom. Soc. 1978, 46, 1251–1271. [Google Scholar] [CrossRef] [Green Version]
- Hsu, C.-W.; Lien, Y.-C.; Chen, H. R&D internationalization and innovation performance. Int. Bus. Rev. 2015, 24, 187–195. [Google Scholar]
- Roberts, J. From know-how to show-how? Questioning the role of information and communication technologies in knowledge transfer. Technol. Anal. Strateg. Manag. 2000, 12, 429–443. [Google Scholar]
- Polzin, F.; von Flotow, P.; Klerkx, L. Addressing barriers to eco-innovation: Exploring the finance mobilisation functions of institutional innovation intermediaries. Technol. Forecast. Soc. Chang. 2016, 103, 34–46. [Google Scholar] [CrossRef]
- Wyatt, J.C. Management of explicit and tacit knowledge. J. R. Soc. Med. 2001, 94, 6–9. [Google Scholar] [CrossRef] [Green Version]
- Morgan, K. The exaggerated death of geography: Learning, proximity and territorial innovation systems. J. Econ. Geogr. 2004, 4, 3–21. [Google Scholar] [CrossRef]
Indicator Type | Variable |
---|---|
Inputs of stage one | R&D expenditures in basic and applied research a |
Number of R&D personnel in basic and applied research a | |
Intermediates (Outputs of stage one) | Number of publications of SCI and SSCI b |
Number of granted patents a | |
Inputs of stage two | R&D expenditures in experimental development research a |
Number of R&D personnel in experimental development research a | |
Outputs of stage two | Revenue from technology transfer a |
Sales revenue from new product a |
Independent Variables | KNOW_PY (1) | KNOW_PY (2) | TECH_PY (3) | TECH_PY (4) | ||||
---|---|---|---|---|---|---|---|---|
Coefficient | S.E | Coefficient | S.E | Coefficient | S.E | Coefficient | S.E | |
Eco | 0.0160 | 0.0448 | −0.0072 | 0.0451 | 0.0928 ** | 0.0380 | 0.0989 ** | 0.0389 |
Open | 0.2420 ** | 0.1121 | 0.2433 ** | 0.0114 | −0.1074 | 0.0950 | −0.0909 | 0.0957 |
Gov | 0.0320 | 0.0419 | 0.0356 | 0.0415 | 0.0963 *** | 0.0355 | 0.0991 *** | 0.0359 |
Hum | −0.1092 | 0.2332 | −0.1188 | 0.2306 | 0.0280 | 0.1979 | 0.0925 | 0.1983 |
Int | 0.0154 ** | 0.0026 | 0.0085 ** | 0.0039 | 0.0074 ** | 0.0022 | 0.0080 ** | 0.0034 |
Dis | −0.0155 *** | 0.3437 | −0.0150 *** | 0.3493 | −0.0912 | 0.2886 | 0.0001 | 0.2885 |
De_Col | 0.0796 ** | 0.0330 | 0.0444 ** | 0.0186 | ||||
Constant | 0.0705 *** | 0.0207 | 0.0669 *** | 0.0207 | −0.0113 | 0.0170 | −0.0168 | 0.0171 |
Number of obs | 270 | 270 | 270 | 270 | ||||
Hausman chi2 Test | 18.52, p < 0.01 | 16.94, p < 0.01 | 2.98, p > 0.1 | 3.24, p > 0.1 | ||||
Model effects | fixed effect | fixed effect | random effect | random effect |
Independent Variables | Gap_KNOW_PY (5) | Gap_TECH_PY (6) | ||
---|---|---|---|---|
Coefficient | S.E | Coefficient | S.E | |
Gap_Eco | 0.0060 *** | 0.0051 | 0.0126 *** | 0.0055 |
Gap_Open | 0.0233 *** | 0.0036 | −0.0082 ** | 0.0039 |
Gap_Gov | 0.0234 *** | 0.0030 | 0.0054 * | 0.0032 |
Gap_Hum | 0.5864 *** | 0.1372 | 0.4453 *** | 0.1495 |
Gap_Int | −0.0061 *** | 0.0011 | −0.0056 *** | 0.0011 |
Dis | −0.1667 *** | 0.0211 | −0.0404 ** | 0.0168 |
Co_Col | −0.0022 ** | 0.0010 | 0.0015 | 0.0011 |
Constant | 0.9502 *** | 0.0292 | −0.6768 ** | 0.0318 |
Number of obs | 3915 | 3915 | ||
Hausman chi2 Test | 21.09, p < 0.01 | 31.33, p < 0.01 | ||
Model effects | fixed effect | fixed effect |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qin, X. The Impact of Interregional Collaboration on Multistage R&D Productivity and Their Interregional Gaps in Chinese Provinces. Mathematics 2022, 10, 1310. https://doi.org/10.3390/math10081310
Qin X. The Impact of Interregional Collaboration on Multistage R&D Productivity and Their Interregional Gaps in Chinese Provinces. Mathematics. 2022; 10(8):1310. https://doi.org/10.3390/math10081310
Chicago/Turabian StyleQin, Xionghe. 2022. "The Impact of Interregional Collaboration on Multistage R&D Productivity and Their Interregional Gaps in Chinese Provinces" Mathematics 10, no. 8: 1310. https://doi.org/10.3390/math10081310
APA StyleQin, X. (2022). The Impact of Interregional Collaboration on Multistage R&D Productivity and Their Interregional Gaps in Chinese Provinces. Mathematics, 10(8), 1310. https://doi.org/10.3390/math10081310