Machinery Lean Manufacturing Tools for Improved Sustainability: The Mexican Maquiladora Industry Experience
Abstract
:1. Introduction
2. Latent Variables and Hypotheses
2.1. Total Productive Maintenance (TPM)
2.2. Jidoka (JID)
2.3. Environmental Sustainability (EnS)
2.4. Overall Equipment Effectiveness (OEE)
2.5. Social Sustainability (SoS)
2.6. Economic Sustainability (EcS)
3. Methodology
3.1. Survey Design
3.2. Survey Administration
3.3. Database Screening
3.4. Descriptive Analysis of the Sample and the Data
3.5. Validation of Latent Variables
- R squared (R2) and Adjusted R2. Determine the parametric predictive validity of each latent dependent variable. Only values higher than 0.02 are accepted.
- Composite reliability index and Cronbach’s alpha. Measure the internal validity of all latent variables. Only values higher than 0.7 are accepted.
- Average Variance Extracted (AVE). Determines convergent validity. Values higher than 0.5 are desired.
- Variance Inflation Factors (VIF). Measure collinearity among latent variables. Only values lower than 3.3 are accepted.
- Q squared (Q2). Measures the non-parametric predictive validity of dependent variables. Only values higher than 0 and similar to their corresponding R2 values are accepted.
3.6. Structural Equation Model
- Average Path Coefficient (APC) measures the average efficiency of the regression values in the model. Its associated p-value must be lower than 0.05.
- Average R2 (ARS) and Average Adjusted R2 (AARS) measure the model’s predictive validity, and their associated p-values must be lower than 0.05.
- Average block VIF (AVIF) and average full collinearity VIF (AFVIF) measure collinearity between latent variables and the common method bias (CMB) estimator [69], and associated values must be lower than 3.3.
- Tenenhaus GoF (GoF) measures the fit between the data and the model. The associated value must be higher than 0.36.
3.6.1. Hypothesis Validation
3.6.2. Sum of Indirect Effects and Total Effects
3.6.3. Probabilities of Low and High LM Implementation
4. Results
4.1. Descriptive Analysis of the Sample and the Items
4.2. Validation of Latent Variables
4.3. Structural Equation Model
4.4. Sum of Indirect Effects and Total Effects
4.5. Probability Scenarios
5. Discussion of Results and Managerial Implications
5.1. Structural Equation Model
5.2. Probability Analysis
6. Conclusions
7. Limitations and Future Research
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- IMMEX. Monthly Statistical Information-Maquiladora Imports and Exports; Maquiladora Association A.C.: Ciudad Juárez, Mexico, 2021; p. 4. [Google Scholar]
- IMMEX. Monthly Statistical Information-Employment; Maquiladora Association A.C.: Ciudad Juárez, Mexico, 2021; p. 4. [Google Scholar]
- IMMEX. Monthly Statistical Information; Maquiladora Association: Ciudad Juárez, Mexico, 2020; p. 3. [Google Scholar]
- Henao, R.; Sarache, W.; Gómez, I. Lean Manufacturing and Sustainable Performance: Trends and Future Challenges. J. Clean. Prod. 2019, 208, 99–116. [Google Scholar] [CrossRef]
- Velmurugan, V.; Karthik, S.; Thanikaikarasan, S. Investigation and implementation of new methods in machine tool production using lean manufacturing system. Mater. Today Proc. 2020, 33, 3080–3084. [Google Scholar] [CrossRef]
- Cherrafi, A.; Elfezazi, S.; Chiarini, A.; Mokhlis, A.; Benhida, K. The integration of lean manufacturing, Six Sigma and sustainability: A literature review and future research directions for developing a specific model. J. Clean. Prod. 2016, 139, 828–846. [Google Scholar] [CrossRef]
- Younus, A.; Pervez, H.; Ali, Y.; Khan, A.U. Impact of Lean, Six Sigma and environmental sustainability on the performance of SMEs. Int. J. Product. Perform. Manag. 2020, 70, 2294–2318. [Google Scholar] [CrossRef]
- Palange, A.; Dhatrak, P. Lean manufacturing a vital tool to enhance productivity in manufacturing. Mater. Today: Proc. 2021, 46, 729–736. [Google Scholar] [CrossRef]
- García-Alcaraz, J.L.; Macías, A.A.M.; Luevano, D.J.P.; Fernández, J.B.; López, A.J.G.; Macías, E.J. Main benefits obtained from a successful JIT implementation. Int. J. Adv. Manuf. Technol. 2016, 86, 2711–2722. [Google Scholar] [CrossRef]
- García, J.L.; Rivera, L.; Blanco, J.; Jiménez, E.; Martínez, E. Structural equations modelling for relational analysis of JIT performance in maquiladora sector. Int. J. Prod. Res. 2014, 52, 4931–4949. [Google Scholar] [CrossRef]
- Farris, J.A.; Van Aken, E.M.; Doolen, T.L.; Worley, J. Critical success factors for human resource outcomes in Kaizen events: An empirical study. Int. J. Prod. Econ. 2009, 117, 42–65. [Google Scholar] [CrossRef]
- Green, K.W.; Sower, V.E.; Zelbst, P.J.; Inman, R.A. Impact of JIT, TQM and green supply chain practices on environmental sustainability. J. Manuf. Technol. Manag. 2019, 30, 26–47. [Google Scholar] [CrossRef]
- Sahoo, S. Assessment of TPM and TQM practices on business performance: A multi-sector analysis. J. Qual. Maint. Eng. 2019, 25, 412–434. [Google Scholar] [CrossRef]
- Jahangir, N.; Hasin, A.A.; Bashar, A. Linkage between TPM, people management and organizational performance. J. Qual. Maint. Eng. 2020, 28, 350–366. [Google Scholar] [CrossRef]
- Samadhiya, A.; Agrawal, R. Achieving sustainability through holistic maintenance-key for competitiveness. In Proceedings of the International Conference on Industrial Engineering and Operations Management, Dubai, United Arab Emirates, 10–12 March 2020; pp. 400–408. [Google Scholar]
- Chen, P.K.; Fortuny-Santos, J.; Lujan, I.; Ruiz-de-Arbulo-López, P. Sustainable manufacturing: Exploring antecedents and influence of Total Productive Maintenance and lean manufacturing. Adv. Mech. Eng. 2019, 11, 1687814019889736. [Google Scholar] [CrossRef] [Green Version]
- Gungor, Z.E.; Evans, S. Addressing environmental and economic impacts of changeover operations through manufacturing strategies. In Proceedings of the 2015 International Conference on Industrial Engineering and Systems Management, Seville, Spain, 21–23 October 2015; pp. 781–787. [Google Scholar]
- Yazdi, P.G.; Azizi, A.; Hashemipour, M. An empirical investigation of the relationship between overall equipment efficiency (OEE) and manufacturing sustainability in industry 4.0 with time study approach. Sustainability 2018, 10, 3031. [Google Scholar] [CrossRef] [Green Version]
- Cercós, M.P.; Calvo, L.M.; Domingo, R. An exploratory study on the relationship of overall equipment effectiveness (OEE) variables and CO2 emissions. Procedia Manuf. 2019, 41, 224–232. [Google Scholar] [CrossRef]
- Romero, D.; Gaiardelli, P.; Powell, D.; Wuest, T.; Thürer, M. Rethinking jidoka systems under automation & learning perspectives in the digital lean manufacturing world. IFAC-Pap. 2019, 52, 899–903. [Google Scholar] [CrossRef]
- Velázquez, L.; Munguía, N.; De Los Ángeles Navarrete, M.; Zavala, A. An overview of sustainability practices at the maquiladora industry in Mexico. Manag. Environ. Qual. Int. J. 2006, 17, 478–489. [Google Scholar] [CrossRef]
- Velazquez, L.; Munguia, N.; Zavala, A.; Esquer, J.; Will, M.; Delakowitz, B. Cleaner production and pollution prevention at the electronic and electric Mexican maquiladora. Manag. Environ. Qual. Int. J. 2014, 25, 600–614. [Google Scholar] [CrossRef]
- Díaz-Reza, J.R.; García-Alcaraz, J.L.; Martínez-Loya, V.; Blanco-Fernández, J.; Jiménez-Macías, E.; Avelar-Sosa, L. The effect of SMED on benefits gained in maquiladora industry. Sustainability 2016, 8, 1237. [Google Scholar] [CrossRef] [Green Version]
- Arredondo-Soto, K.C.; Cruz-Castillo, M.S.; Carrillo-Gutierrez, T.; Solis-Quinteros, M.; Avila-Lopez, L.A. Calibration system for cost reduction: A case study in the Maquiladora industry. In Proceedings of the International Conference on Industrial Engineering and Operations Management, Bandung, Indonesia, 6–8 March 2018. [Google Scholar]
- García-Alcaraz, J.L.; Morales García, A.S.; Díaz-Reza, J.R.; Jiménez Macías, E.; Javierre Lardies, C.; Blanco Fernández, J. Effect of lean manufacturing tools on sustainability: The case of Mexican maquiladoras. Environ. Sci. Pollut. Res. 2022; in press. [Google Scholar] [CrossRef]
- Jenkins, B.R. From mitigation to sustainability: The evolution of incorporating environmental factors into development decisions in Australasia. Int. J. Sustain. Dev. Plan. 2016, 11, 920–929. [Google Scholar] [CrossRef]
- Schindlerová, V.; Šajdlerová, I.; Michalčík, V.; Nevima, J.; Krejčí, L. Potential of using TPM to increase the efficiency of production processes. Teh. Vjesn. 2020, 27, 737–743. [Google Scholar] [CrossRef]
- Kaczmarek, M.J. Integrating Lean and Green Paradigms in Maintenance Management. IFAC Proc. Vol. 2014, 47, 4471–4476. [Google Scholar] [CrossRef]
- Sajeev, A.; Kaur, S. Environmental sustainability, trade and economic growth in India: Implications for public policy. Int. Trade Politics Dev. 2020, 4, 141–160. [Google Scholar] [CrossRef]
- Bagire, V.; Sendawula, K.; Mbidde, C.I.; Turyakira, P. Environmental commitment and environmental sustainability practices of manufacturing small and medium enterprises in Uganda. J. Enterprising Communities People Places Glob. Econ. 2020, 15, 588–607. [Google Scholar] [CrossRef]
- Saxena, L.K.; Jain, P.K.; Sharma, A.K. Tactical supply chain planning for tyre remanufacturing considering carbon tax policy. Int. J. Adv. Manuf. Technol. 2018, 97, 1505–1528. [Google Scholar] [CrossRef]
- Arredondo-Soto, K.C.; Sanchez-Leal, J.; Reyes-Martinez, R.M.; Salazar-Ruíz, E.; Maldonado-Macias, A.A. World class remanufacturing productions systems: An analysis of Mexican maquiladoras. Adv. Intell. Syst. Comput. 2018, 606, 153–161. [Google Scholar] [CrossRef]
- Ullah, M.; Asghar, I.; Zahid, M.; Omair, M.; AlArjani, A.; Sarkar, B. Ramification of remanufacturing in a sustainable three-echelon closed-loop supply chain management for returnable products. J. Clean. Prod. 2021, 290, 125609. [Google Scholar] [CrossRef]
- Liu, C.; Cai, W.; Dinolov, O.; Zhang, C.; Rao, W.; Jia, S.; Li, L.; Chan, F.T.S. Emergy based sustainability evaluation of remanufacturing machining systems. Energy 2018, 150, 670–680. [Google Scholar] [CrossRef]
- Durán, O.; Durán, P.A. Prioritization of physical assets for maintenance and production sustainability. Sustainability 2019, 11, 4269. [Google Scholar] [CrossRef] [Green Version]
- Singh, S.; Khamba, J.S.; Singh, D. Analysis and directions of OEE and its integration with different strategic tools. Proc. Inst. Mech. Eng. Part E J. Process Mech. Eng. 2020, 235, 594–605. [Google Scholar] [CrossRef]
- da Silva, I.B.; Godinho Filho, M. Single-minute exchange of die (SMED): A state-of-the-art literature review. Int. J. Adv. Manuf. Technol. 2019, 102, 4289–4307. [Google Scholar] [CrossRef]
- Arslan, M. Corporate social sustainability in supply chain management: A literature review. J. Glob. Responsib. 2020, 11, 233–255. [Google Scholar] [CrossRef]
- Alsayegh, M.F.; Rahman, R.A.; Homayoun, S. Corporate economic, environmental, and social sustainability performance transformation through ESG disclosure. Sustainability 2020, 12, 3910. [Google Scholar] [CrossRef]
- Schönborn, G.; Berlin, C.; Pinzone, M.; Hanisch, C.; Georgoulias, K.; Lanz, M. Why social sustainability counts: The impact of corporate social sustainability culture on financial success. Sustain. Prod. Consum. 2019, 17, 1–10. [Google Scholar] [CrossRef]
- Tortorella, G.; Cómbita-Niño, J.; Monsalvo-Buelvas, J.; Vidal-Pacheco, L.; Herrera-Fontalvo, Z. Design of a methodology to incorporate Lean Manufacturing tools in risk management, to reduce work accidents at service companies. Procedia Comput. Sci. 2020, 177, 276–283. [Google Scholar] [CrossRef]
- Marhavilas, P.; Koulouriotis, D.; Nikolaou, I.; Tsotoulidou, S. International occupational health and safety management-systems standards as a frame for the sustainability: Mapping the territory. Sustainability 2018, 10, 3663. [Google Scholar] [CrossRef] [Green Version]
- Evangelinos, K.; Fotiadis, S.; Skouloudis, A.; Khan, N.; Konstandakopoulou, F.; Nikolaou, I.; Lundy, S. Occupational health and safety disclosures in sustainability reports: An overview of trends among corporate leaders. Corp. Soc. Responsib. Environ. Manag. 2018, 25, 961–970. [Google Scholar] [CrossRef]
- Masuin, R.; Latief, Y.; Yuri Zagloel, T. Development of integration risk on integrated management system in order to increase organisational performance of construction company. Int. J. Proj. Organ. Manag. 2020, 12, 164–177. [Google Scholar] [CrossRef]
- Macchi, M.; Mazza, A.; Savino, M.M. Investigating the impact of social sustainability within maintenance operations. J. Qual. Maint. Eng. 2015, 21, 310–331. [Google Scholar] [CrossRef]
- Lingappa, A.K.; Kiran, K.K.; Oommen Mathew, A. Safety training transfer in chemical manufacturing: The role of personality traits and learning motivation. Cogent Bus. Manag. 2020, 7, 1835335. [Google Scholar] [CrossRef]
- Sarkar, A.; Azim, J.A.; Asif, A.A.; Qian, L.; Peau, A.K. Structural equation modeling for indicators of sustainable agriculture: Prospective of a developing country’s agriculture. Land Use Policy 2021, 109, 105638. [Google Scholar] [CrossRef]
- Coppola, A.; Ianuario, S. Environmental and social sustainability in Producer Organizations’ strategies. Br. Food J. 2017, 119, 1732–1747. [Google Scholar] [CrossRef]
- ul Haq, S.; Boz, I. Measuring environmental, economic, and social sustainability index of tea farms in Rize Province, Turkey. Environ. Dev. Sustain. 2020, 22, 2545–2567. [Google Scholar] [CrossRef]
- Malak-Rawlikowska, A.; Majewski, E.; Was, A.; Borgen, S.O.; Csillag, P.; Donati, M.; Freeman, R.; Hoàng, V.; Lecoeur, J.L.; Mancini, M.C.; et al. Measuring the economic, environmental, and social sustainability of short food supply chains. Sustainability 2019, 11, 4004. [Google Scholar] [CrossRef] [Green Version]
- Lehner, O.M.; Harrer, T. Accounting for economic sustainability: Environmental, social and governance perspectives. J. Appl. Account. Res. 2019, 20, 365–371. [Google Scholar] [CrossRef]
- Arya, P.; Jaiswal, M.P.; Srivastava, M.K. Modelling environmental and economic sustainability of logistics. Asia-Pac. J. Bus. Adm. 2019, 12, 73–94. [Google Scholar] [CrossRef]
- Tomšič, N.; Bojnec, Š.; Simčič, B. Corporate sustainability and economic performance in small and medium sized enterprises. J. Clean. Prod. 2015, 108, 603–612. [Google Scholar] [CrossRef]
- Papetti, A.; Gregori, F.; Pandolfi, M.; Peruzzini, M.; Germani, M. A method to improve workers’ well-being toward human-centered connected factories. J. Comput. Des. Eng. 2021, 7, 630–643. [Google Scholar] [CrossRef]
- Dhahri, S.; Slimani, S.; Omri, A. Behavioral entrepreneurship for achieving the sustainable development goals. Technol. Forecast. Soc. Change 2021, 165, 120561. [Google Scholar] [CrossRef]
- Gallo, Ó.; Gonzales–Miranda, D.R.; Roman-Calderon, J.P.; García, G.A. Decent work and healthy employment: A qualitative case study about Colombian millennials. Int. J. Workplace Health Manag. 2020, 13, 477–495. [Google Scholar] [CrossRef]
- Hald, K.S. Social influence and safe behavior in manufacturing. Saf. Sci. 2018, 109, 1–11. [Google Scholar] [CrossRef]
- García-Alcaraz, J.L.; Flor-Montalvo, F.J.; Avelar-Sosa, L.; Sánchez-Ramírez, C.; Jiménez-Macías, E. Human resource abilities and skills in TQM for sustainable enterprises. Sustainability 2019, 11, 6488. [Google Scholar] [CrossRef] [Green Version]
- Malik, A.; Egan, M.; du Plessis, M.; Lenzen, M. Managing sustainability using financial accounting data: The value of input-output analysis. J. Clean. Prod. 2021, 293, 126128. [Google Scholar] [CrossRef]
- Badiger, A.S.; Gandhinathan, R. A proposal: Evaluation of OEE and impact of six big losses on equipment earning capacity. Int. J. Process Manag. Benchmarking 2008, 2, 234–248. [Google Scholar] [CrossRef]
- García-Alcaraz, J.; Maldonado, A.; Alvarado Iniesta, A.; Cortes Robles, G.; Alor Hernández, G. A systematic review/survey for JIT implementation: Mexican maquiladoras as case study. Comput. Ind. 2014, 65, 761–773. [Google Scholar] [CrossRef]
- Morales García, A.; García Alcaraz, J.; Díaz Reza, J. Survey: Effect of Lean Manufacturing Tools on the Company’s Environmental Performance; Autonomous University of Ciudad Juarez: Ciudad Juarez, Mexico, 2021. [Google Scholar] [CrossRef]
- Li, H.; Wang, B.; Xie, X. An improved content-based outlier detection method for ICS intrusion detection. EURASIP J. Wirel. Commun. Netw. 2020, 2020, 103. [Google Scholar] [CrossRef]
- Kock, N. Factor-based structural equation modeling with WarpPLS. Australas. Mark. J. 2019, 27, 57–63. [Google Scholar] [CrossRef]
- Kock, N. From composites to factors: Bridging the gap between PLS and covariance-based structural equation modelling. Inf. Syst. J. 2019, 29, 674–706. [Google Scholar] [CrossRef]
- Hair, J.; Hult, G.; Ringle, C.; Sarstedt, M. A Primer on Partial Least Square Structural Equation Modeling (PLS-SEM), 2nd ed.; Sage: Thousand Oaks, CA, USA, 2017; Volume 2. [Google Scholar]
- Garcia-Alcaraz, J.L.; Maldonado-Macias, A.A.; Alor-Hernandez, G.; Sanchez-Ramirez, C. The impact of information and communication technologies (ICT) on agility, operating, and economical performance of supply chain. Adv. Prod. Eng. Manag. 2017, 12, 29–40. [Google Scholar] [CrossRef] [Green Version]
- Kock, N. WarpPLS© User Manual: Version 7.0; ScriptWarp Systems TM: Laredo, TX, USA, 2020; p. 141. [Google Scholar]
- Kock, N. Common Method Bias in PLS-SEM: A Full Collinearity Assessment Approach. Int. J. e-Collaboration (IJeC) 2015, 11, 10. [Google Scholar] [CrossRef] [Green Version]
- Morales García, A.; García-Alcaraz, J. Dataset for Paper: Machinery-Associated Lean Manufacturing Tools and Their Effect on Sustainability: The Case of Mexican Maquiladoras; Autonomous University of Ciudad Juarez: Ciudad Juarez, Mexico, 2021. [Google Scholar] [CrossRef]
- Silva, S.; Sá, J.C.; Silva, F.J.G.; Ferreira, L.P.; Santos, G. Lean Green—The Importance of Integrating Environment into Lean Philosophy—A Case Study. Lect. Notes Netw. Syst. 2020, 122, 211–219. [Google Scholar] [CrossRef]
- Sahoo, S. Exploring the effectiveness of maintenance and quality management strategies in Indian manufacturing enterprises. Benchmarking 2020, 27, 1399–1431. [Google Scholar] [CrossRef]
- Longoni, A.; Cagliano, R. Cross-functional executive involvement and worker involvement in lean manufacturing and sustainability alignment. Int. J. Oper. Prod. Manag. 2015, 35, 1332–1358. [Google Scholar] [CrossRef]
Position | Number of Employees | Total | |||||
---|---|---|---|---|---|---|---|
<50 | 50 to <300 | 300 to <1000 | 1000 to <5000 | 5000 to<10,000 | +10,000 | ||
Maintenance manager | 13 | 12 | 13 | 32 | 6 | 4 | 80 |
Production manager | 10 | 17 | 28 | 47 | 10 | 13 | 125 |
Maintenance engineer | 5 | 4 | 8 | 9 | 3 | 5 | 34 |
Total | 28 | 33 | 49 | 88 | 19 | 22 | 239 |
Sector | Years of Experience in the Position | Total | ||
---|---|---|---|---|
2–5 | 5–10 | +10 | ||
Automotive | 92 | 23 | 22 | 137 |
Electronic | 21 | 3 | 3 | 27 |
Electrical | 21 | 1 | 2 | 24 |
Medical | 11 | 2 | 7 | 20 |
Aeronautics | 9 | 4 | 1 | 14 |
Mechanical | 9 | 0 | 2 | 11 |
Logistics | 6 | 0 | 0 | 6 |
Total | 169 | 33 | 37 | 239 |
Index | Best | TPM | EcS | SoS | EnS | JID | OEE | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Value If | |||||||||||||
Items (Before/after) | 7 | 4 | 8 | 5 | 6 | 4 | 6 | 4 | 5 | 4 | 5 | 3 | |
R2 | >0.02 | 0.635 | 0.594 | 0.38 | 0.226 | 0.193 | |||||||
Adjusted R2 | >0.02 | 0.63 | 0.591 | 0.372 | 0.222 | 0.19 | |||||||
Composite reliability | >0.7 | 0.891 | 0.938 | 0.948 | 0.948 | 0.876 | 0.904 | ||||||
Cronbach’s alpha | >0.7 | 0.817 | 0.917 | 0.927 | 0.927 | 0.811 | 0.841 | ||||||
AVE | >0.5 | 0.732 | 0.75 | 0.821 | 0.821 | 0.639 | 0.759 | ||||||
Full collinearity VIF | <3.3 | 2.227 | 2.86 | 3.006 | 2.129 | 1.406 | 2.162 | ||||||
Q2 | >0.02 | 0.636 | 0.593 | 0.383 | 0.228 | 0.195 | |||||||
Skewness | −0.713 | −0.522 | −0.828 | −0.554 | −0.441 | −0.632 | |||||||
Kurtosis | −0.008 | 0.001 | 0.123 | −0.279 | −0.459 | −0.037 | |||||||
JB normality | No | No | No | No | No | No |
Dependent Variable | Independent Variable | R2 | ||||
---|---|---|---|---|---|---|
TPM | SoS | EnS | JID | OEE | ||
EcS | 0.313 | 0.163 | 0.160 | 0.636 | ||
SoS | 0.289 | 0.305 | 0.594 | |||
EnS | 0.096 | 0.088 | 0.196 | 0.380 | ||
JID | 0.226 | 0.226 | ||||
OEE | 0.193 | 0.193 |
Sum of Indirect Effects | |||||
---|---|---|---|---|---|
Dependent Variables | Independent Variables | ||||
TPM | SoS | EnS | JID | OEE | |
EcS | 0.390 (p < 0.001) ES = 0.253 | 0.191 (p < 0.001) ES = 0.126 | 0.261 (p < 0.001) ES = 0.104 | 0.153 (p < 0.001) ES = 0.100 | |
SoS | 0.163 (p < 0.001) ES = 0.108 | 0.160 (p < 0.001) ES = 0.069 | 0.159 (p < 0.001) ES = 0.105 | ||
EnS | 0.143 (p < 0.001) ES = 0.084 | 0.154 (p < 0.001) ES = 0.069 | |||
OEE | 0.209 (p < 0.001) ES = 0.130 | ||||
Total Effects | |||||
EcS | 0.390 (p < 0.001) ES = 0.253 | 0.420 (p < 0.001) ES = 0.313 | 0.437 (p < 0.001) ES = 0.289 | 0.261 (p < 0.001) ES = 0.104 | 0.397 (p < 0.001) ES = 0.260 |
SoS | 0.597 (p < 0.001) ES = 0.397 | 0.454 (p < 0.001) ES = 0.305 | 0.160 (p < 0.001) ES = 0.069 | 0.159 (p < 0.001) ES = 0.105 | |
EnS | 0.358 (p < 0.001) ES = 0.181 | 0.352 (p < 0.001) ES = 0.156 | 0.351 (p < 0.001) ES = 0.196 | ||
JID | 0.475 (p < 0.001) ES = 0.226 | ||||
OEE | 0.209 (p < 0.001) ES = 0.130 | 0.400 (p < 0.001) ES = 0.193 |
Level | TPM+ | TPM− | JID+ | JID− | OEE+ | OEE− | EnS+ | EnS− | SoS+ | SoS− | |
---|---|---|---|---|---|---|---|---|---|---|---|
Probability | 0.188 | 0.142 | 0.172 | 0.180 | 0.188 | 0.146 | 0.159 | 0.151 | 0.205 | 0.159 | |
EcS+ | 0.151 | & = 0.084 If = 0.444 | & = 0.004 If = 0.029 | & = 0.050 If = 0.333 | & = 0.000 If = 0.000 | & = 0.079 If = 0.422 | & = 0.008 If = 0.570 | & = 0.084 If = 0.526 | & = 0.004 If = 0.028 | & = 0.088 If = 0.429 | & = 0.000 If = 0.000 |
EcS− | 0.138 | & = 0.004 | & = 0.067 | & = 0.008 If = 0.061 | & = 0.059 If = 0.424 | & = 0.000 If = 0.000 | & = 0.075 If = 0.514 | & = 0.004 If = 0.026 | & = 0.075 If = 0.500 | & = 0.000 If = 0.000 | & = 0.084 If = 0.526 |
If = 0.029 | If = 0.471 | ||||||||||
SoS+ | 0.205 | & = 0.100 If = 0.533 | & = 0.008 If = 0.059 | & = 0.071 If = 0.347 | & = 0.021 If = 0.102 | & = 0.100 If = 0.533 | & = 0.008 If = 0.057 | & = 0.084 If = 0.526 | & = 0.008 If = 0.056 | ||
SoS− | 0.159 | & = 0.000 If = 0.000 | & = 0.092 If = 0.647 | & = 0.008 If = 0.053 | & = 0.067 If = 0.421 | & = 0.004 If = 0.022 | & = 0.088 If = 0.600 | & = 0.000 If = 0.000 | & = 0.092 If = 0.611 | ||
EnS+ | 0.159 | & = 0.059 If = 0.311 | & = 0.013 If = 0.088 | & = 0.050 If = 0.316 | & = 0.017 If = 0.105 | & = 0.059 If = 0.311 | & = 0.013 If = 0.086 | ||||
EnS− | 0.151 | & = 0.008 If = 0.044 | & = 0.067 If = 0.471 | & = 0.004 If = 0.028 | & = 0.067 If = 0.444 | & = 0.000 If = 0.000 | & = 0.071 If = 0.486 | ||||
OEE+ | 0.188 | & = 0.088 If = 0.467 | & = 0.08 If = 0.059 | & = 0.071 If = 0.378 | & = 0.021 If = 0.111 | ||||||
OEE− | 0.146 | & = 0.008 If = 0.044 | & = 0.088 If = 0.618 | & = 0.017 If = 0.114 | & = 0.063 If = 0.429 | ||||||
JID+ | 0.172 | & = 0.067 If = 0.356 | & = 0.004 If = 0.029 | ||||||||
JID− | 0.180 | & = 0.013 If = 0.067 | & = 0.067 If = 0.471 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
García Alcaraz, J.L.; Morales García, A.S.; Díaz Reza, J.R.; Blanco Fernández, J.; Jiménez Macías, E.; Puig i Vidal, R. Machinery Lean Manufacturing Tools for Improved Sustainability: The Mexican Maquiladora Industry Experience. Mathematics 2022, 10, 1468. https://doi.org/10.3390/math10091468
García Alcaraz JL, Morales García AS, Díaz Reza JR, Blanco Fernández J, Jiménez Macías E, Puig i Vidal R. Machinery Lean Manufacturing Tools for Improved Sustainability: The Mexican Maquiladora Industry Experience. Mathematics. 2022; 10(9):1468. https://doi.org/10.3390/math10091468
Chicago/Turabian StyleGarcía Alcaraz, Jorge Luis, Adrián Salvador Morales García, José Roberto Díaz Reza, Julio Blanco Fernández, Emilio Jiménez Macías, and Rita Puig i Vidal. 2022. "Machinery Lean Manufacturing Tools for Improved Sustainability: The Mexican Maquiladora Industry Experience" Mathematics 10, no. 9: 1468. https://doi.org/10.3390/math10091468
APA StyleGarcía Alcaraz, J. L., Morales García, A. S., Díaz Reza, J. R., Blanco Fernández, J., Jiménez Macías, E., & Puig i Vidal, R. (2022). Machinery Lean Manufacturing Tools for Improved Sustainability: The Mexican Maquiladora Industry Experience. Mathematics, 10(9), 1468. https://doi.org/10.3390/math10091468