Majorization–Minimization Total Variation Solution Methods for Electrical Impedance Tomography
Abstract
:1. Introduction
Paper Overview
- 1.
- We propose an iteratively reweighted method through a majorization–minimization (MM) technique to solve the general regularization EIT problem for a broad selection of the values of p, i.e., .
- 2.
- We combine the MM method with the IRGN to solve the nonlinear EIT inverse problem.
- 3.
- We include a general regularization operator for specific choices and values of p (on which we comment here) yielding different methods. For instance, choosing yields TV-MMIRGN, and choosing yields the FTV-MMIRGN method.
- 4.
- We test our methods on simulated examples that involve conductive and resistive anomalies.
2. Background and Formulation of Problem of Interest
2.1. Electrode Model
2.2. Discretization
2.3. Problem Formulation (Inverse Problem of Interest)
Need for Regularization
2.4. Total Variation Methods
Total Variation on a Regular Rectangular Domain
2.5. Total Variation and the Graph Perspective
2.5.1. Total Variation on a Graph
2.5.2. Fractional TV
3. Fractional TV Solution Method for EIT FTV-MMIRGN
4. Numerical Experiments
4.1. Example 1
4.2. Example 2
4.3. Example 3
5. Conclusions and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Calderón, A.P. On an inverse boundary value problem. Comput. Appl. Math. 2006, 25, 133–138. [Google Scholar] [CrossRef] [Green Version]
- Boverman, G.; Kao, T.J.; Isaacson, D.; Saulnier, G.J. An implementation of Calderon’s method for 3-D limited-view EIT. IEEE Trans. Med. Imaging 2009, 28, 1073–1082. [Google Scholar] [CrossRef] [Green Version]
- Cherepenin, V.; Karpov, A.; Korjenevsky, A.; Kornienko, V.; Mazaletskaya, A.; Mazourov, D.; Meister, D. A 3D electrical impedance tomography (EIT) system for breast cancer detection. Physiol. Meas. 2001, 22, 9. [Google Scholar] [CrossRef]
- Jang, G.Y.; Ayoub, G.; Kim, Y.E.; Oh, T.I.; Chung, C.R.; Suh, G.Y.; Woo, E.J. Integrated EIT system for functional lung ventilation imaging. Biomed. Eng. Online 2019, 18, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Toivanen, J.; Hänninen, A.; Savolainen, T.; Forss, N.; Kolehmainen, V. Monitoring hemorrhagic strokes using EIT. In Bioimpedance and Spectroscopy; Elsevier: Amsterdam, The Netherlands, 2021; pp. 271–298. [Google Scholar]
- Agnelli, J.P.; Çöl, A.; Lassas, M.; Murthy, R.; Santacesaria, M.; Siltanen, S. Classification of stroke using neural networks in electrical impedance tomography. Inverse Probl. 2020, 36, 115008. [Google Scholar] [CrossRef]
- Patterson, R. Electrical Impedance Tomography: Methods, History, and Applications; Institute of Physics Medical Physics Series; Random Books: New York, NY, USA, 2005. [Google Scholar]
- Bayford, R.H. Bioimpedance tomography (electrical impedance tomography). Annu. Rev. Biomed. Eng. 2006, 8, 63–91. [Google Scholar] [CrossRef]
- Barber, D.C.; Brown, B.H. Applied potential tomography. J. Phys. E Sci. Instrum. 1984, 17, 723. [Google Scholar] [CrossRef]
- Daily, W.; Ramirez, A.; LaBrecque, D.; Nitao, J. Electrical resistivity tomography of vadose water movement. Water Resour. Res. 1992, 28, 1429–1442. [Google Scholar] [CrossRef]
- Stacey, R.; Li, K.; Horne, R.N. Investigating Electrical-Impedance Tomography as a Technique for Real-Time Saturation Monitoring. SPE J. 2009, 14, 135–143. [Google Scholar] [CrossRef] [Green Version]
- Isaksen, O.; Dico, A.; Hammer, E.A. A capacitance-based tomography system for interface measurement in separation vessels. Meas. Sci. Technol. 1994, 5, 1262. [Google Scholar] [CrossRef]
- Jin, B.; Maass, P. An analysis of electrical impedance tomography with applications to Tikhonov regularization. ESAIM Control. Optim. Calc. Var. 2012, 18, 1027–1048. [Google Scholar] [CrossRef] [Green Version]
- Jin, B.; Khan, T.; Maass, P. A reconstruction algorithm for electrical impedance tomography based on sparsity regularization. Int. J. Numer. Methods Eng. 2012, 89, 337–353. [Google Scholar] [CrossRef]
- Lionheart, W.R.; Kaipio, J.; McLeod, C.N. Generalized optimal current patterns and electrical safety in EIT. Physiol. Meas. 2001, 22, 85. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Islam, M.R.; Kiber, M.A. Electrical impedance tomography imaging using gauss-newton algorithm. In Proceedings of the 2014 International Conference on Informatics, Electronics & Vision (ICIEV), Dhaka, Bangladesh, 23–24 May 2014; pp. 1–4. [Google Scholar]
- Hamilton, S.J.; Lionheart, W.; Adler, A. Comparing D-bar and common regularization-based methods for electrical impedance tomography. Physiol. Meas. 2019, 40, 044004. [Google Scholar] [CrossRef] [PubMed]
- Herzberg, W.; Rowe, D.B.; Hauptmann, A.; Hamilton, S.J. Graph Convolutional Networks for Model-Based Learning in Nonlinear Inverse Problems. arXiv 2021, arXiv:2103.15138. [Google Scholar] [CrossRef]
- Kirsch, A.; Grinberg, N. The Factorization Method for Inverse Problems; Oxford University Press: Oxford, UK, 2008; Volume 36. [Google Scholar]
- El Arwadi, T.; Sayah, T. A new regularization of the D-bar method with complex conductivity. Complex Var. Elliptic Equ. 2021, 66, 826–842. [Google Scholar] [CrossRef]
- Mueller, J.L.; Siltanen, S. The d-bar method for electrical impedance tomography—Demystified. Inverse Probl. 2020, 36, 093001. [Google Scholar] [CrossRef]
- Hamilton, S.J.; Hauptmann, A. Deep D-bar: Real-time electrical impedance tomography imaging with deep neural networks. IEEE Trans. Med. Imaging 2018, 37, 2367–2377. [Google Scholar] [CrossRef] [Green Version]
- Kaipio, J.P.; Kolehmainen, V.; Somersalo, E.; Vauhkonen, M. Statistical inversion and Monte Carlo sampling methods in electrical impedance tomography. Inverse Probl. 2000, 16, 1487. [Google Scholar] [CrossRef]
- Sun, X.; Lee, E.; Choi, J.I. Quantification of measurement error effects on conductivity reconstruction in electrical impedance tomography. Inverse Probl. Sci. Eng. 2020, 28, 1669–1693. [Google Scholar] [CrossRef]
- Kaipio, J.; Seppänen, A.; Somersalo, E.; Haario, H. Posterior covariance related optimal current patterns in electrical impedance tomography. Inverse Probl. 2004, 20, 919. [Google Scholar] [CrossRef]
- Nissinen, A.; Heikkinen, L.; Kaipio, J. The Bayesian approximation error approach for electrical impedance tomography—experimental results. Meas. Sci. Technol. 2007, 19, 015501. [Google Scholar] [CrossRef]
- Nissinen, A.; Heikkinen, L.; Kolehmainen, V.; Kaipio, J. Compensation of errors due to discretization, domain truncation and unknown contact impedances in electrical impedance tomography. Meas. Sci. Technol. 2009, 20, 105504. [Google Scholar] [CrossRef]
- Cheng, K.S.; Isaacson, D.; Newell, J.; Gisser, D.G. Electrode models for electric current computed tomography. IEEE Trans. Biomed. Eng. 1989, 36, 918–924. [Google Scholar] [CrossRef] [Green Version]
- Hanke, M.; Harrach, B.; Hyvönen, N. Justification of point electrode models in electrical impedance tomography. Math. Model. Methods Appl. Sci. 2011, 21, 1395–1413. [Google Scholar] [CrossRef]
- Babaeizadeh, S.; Brooks, D.H.; Isaacson, D.; Newell, J.C. Electrode boundary conditions and experimental validation for BEM-based EIT forward and inverse solutions. IEEE Trans. Med. Imaging 2006, 25, 1180–1188. [Google Scholar] [CrossRef]
- Vauhkonen, P.J.; Vauhkonen, M.; Savolainen, T.; Kaipio, J.P. Three-dimensional electrical impedance tomography based on the complete electrode model. IEEE Trans. Biomed. Eng. 1999, 46, 1150–1160. [Google Scholar] [CrossRef]
- Hyvonen, N.; Mustonen, L. Smoothened complete electrode model. SIAM J. Appl. Math. 2017, 77, 2250–2271. [Google Scholar] [CrossRef] [Green Version]
- Dardé, J.; Staboulis, S. Electrode modelling: The effect of contact impedance. ESAIM Math. Model. Numer. Anal. 2016, 50, 415–431. [Google Scholar] [CrossRef] [Green Version]
- Somersalo, E.; Cheney, M.; Isaacson, D. Existence and uniqueness for electrode models for electric current computed tomography. SIAM J. Appl. Math. 1992, 52, 1023–1040. [Google Scholar] [CrossRef]
- Vauhkonen, P.J.; Vauhkonen, M.; Seppänen, A.; Kaipio, J.P. Iterative image reconstruction in three-dimensional electrical impedance tomography. Inverse Probl. Des. Optim. 2004, 1, 152. [Google Scholar]
- Cheney, M.; Isaacson, D.; Newell, J.C. Electrical impedance tomography. SIAM Rev. 1999, 41, 85–101. [Google Scholar] [CrossRef] [Green Version]
- Padilha Leitzke, J.; Zangl, H. A review on electrical impedance tomography spectroscopy. Sensors 2020, 20, 5160. [Google Scholar] [CrossRef] [PubMed]
- Borcea, L. Electrical impedance tomography. Inverse Probl. 2002, 18, R99. [Google Scholar] [CrossRef]
- Tavares, R.S.; Nakadaira Filho, F.A.; Tsuzuki, M.S.; Martins, T.C.; Lima, R.G. Discretization error and the EIT forward problem. IFAC Proc. Vol. 2014, 47, 7535–7540. [Google Scholar] [CrossRef]
- Groetsch, C.W. The Theory of Tikhonov Regularization for Fredholm Equations of the First Kind; Pitman Advanced Pub. Program: Chiyoda, Tokyo, 1984; Volume 105. [Google Scholar]
- Hanke, M.; Hansen, P.C. Regularization methods for large-scale problems. Surv. Math. Ind. 1993, 3, 253–315. [Google Scholar]
- Engl, H.W.; Hanke, M.; Neubauer, A. Regularization of Inverse Problems; Springer Science & Business Media: Berlin/Heidelberg, Germany, 1996; Volume 375. [Google Scholar]
- Lechleiter, A.; Rieder, A. Newton regularizations for impedance tomography: A numerical study. Inverse Probl. 2006, 22, 1967. [Google Scholar] [CrossRef]
- Hansen, P.C. Discrete Inverse Problems: Insight and Algorithms; SIAM: Philadelphia, PA, USA, 2010. [Google Scholar]
- Rudin, L.I.; Osher, S.; Fatemi, E. Nonlinear total variation based noise removal algorithms. Phys. D Nonlinear Phenom. 1992, 60, 259–268. [Google Scholar] [CrossRef]
- Caselles, V.; Chambolle, A.; Novaga, M. Total Variation in Imaging. Handb. Math. Methods Imaging 2015, 1, 1455–1499. [Google Scholar]
- Zhang, Y.; Zhang, W.; Lei, Y.; Zhou, J. Few-view image reconstruction with fractional-order total variation. JOSA A 2014, 31, 981–995. [Google Scholar] [CrossRef]
- Jun, Z.; Zhihui, W. A class of fractional-order multi-scale variational models and alternating projection algorithm for image denoising. Appl. Math. Model. 2011, 35, 2516–2528. [Google Scholar] [CrossRef]
- Beck, A.; Teboulle, M. Fast gradient-based algorithms for constrained total variation image denoising and deblurring problems. IEEE Trans. Image Process. 2009, 18, 2419–2434. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Björk, Å. Numerical Methods for Least Squares Problems; Society for Industrial and Applied Mathematics: Philadelphia, PA, USA, 1996; p. 147. [Google Scholar]
- Vauhkonen, P. Image Reconstruction in Three-Dimensional Electrical Impedance Tomography (Kolmedimensionaalinen Kuvantaminen Impedanssitomografiassa); Kuopion Yliopisto: Kuopio, Finland, 2004. [Google Scholar]
- Pes, F.; Rodriguez, G. A doubly relaxed minimal-norm Gauss–Newton method for underdetermined nonlinear least-squares problems. Appl. Numer. Math. 2022, 171, 233–248. [Google Scholar] [CrossRef]
- Wohlberg, B.; Rodriguez, P. An iteratively reweighted norm algorithm for minimization of total variation functionals. IEEE Signal Process. Lett. 2007, 14, 948–951. [Google Scholar] [CrossRef]
- Bube, K.P.; Langan, R.T. Hybrid ℓ 1/ℓ 2 minimization with applications to tomography. Geophysics 1997, 62, 1183–1195. [Google Scholar] [CrossRef]
- Beaton, A.E.; Tukey, J.W. The fitting of power series, meaning polynomials, illustrated on band-spectroscopic data. Technometrics 1974, 16, 147–185. [Google Scholar] [CrossRef]
- Darbon, J.; Sigelle, M. Image restoration with discrete constrained total variation part I: Fast and exact optimization. J. Math. Imaging Vis. 2006, 26, 261–276. [Google Scholar] [CrossRef]
- Lange, K. MM Optimization Algorithms; SIAM: Philadelphia, PA, USA, 2016. [Google Scholar]
- Romano, D.; Pisa, S.; Piuzzi, E. Implementation of the Newton-Raphson and admittance methods for EIT. Int. J. Bioelectromagn. 2010, 12, 12–20. [Google Scholar]
- Tan, R.H.; Rossa, C. Electrical Impedance Tomography using Differential Evolution integrated with a Modified Newton Raphson Algorithm. In Proceedings of the 2020 IEEE International Conference on Systems, Man, and Cybernetics (SMC), Toronto, ON, Canada, 11–14 October 2020; pp. 2528–2534. [Google Scholar]
- MacNeal, B.E.; Brauer, J.R. Electrical circuits and finite element field models: A general approach. In Finite Elements, Electromagnetics and Design; Elsevier: Amsterdam, The Netherlands, 1995; pp. 179–199. [Google Scholar]
- Spyrakos, C.C. Finite Element Modeling; West Virginia Univ. Press: Morgantown, WV, USA, 1994. [Google Scholar]
- Kaipio, J.; Somersalo, E. Statistical inverse problems: Discretization, model reduction and inverse crimes. J. Comput. Appl. Math. 2007, 198, 493–504. [Google Scholar] [CrossRef] [Green Version]
- Nocedal, J.; Wright, S.J. Numerical Optimization; Springer: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
- Lanza, A.; Morigi, S.; Reichel, L.; Sgallari, F. A generalized Krylov subspace method for ℓp − ℓq minimization. SIAM J. Sci. Comput. 2015, 37, S30–S50. [Google Scholar] [CrossRef]
- Huang, G.; Lanza, A.; Morigi, S.; Reichel, L.; Sgallari, F. Majorization–minimization generalized Krylov subspace methods for ℓp − ℓq optimization applied to image restoration. BIT Numer. Math. 2017, 57, 351–378. [Google Scholar] [CrossRef]
- Wu, C.; Hutton, M.; Soleimani, M. Limited angle electrical resistance tomography in wastewater monitoring. Sensors 2020, 20, 1899. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, X.; Yao, S.; Lim, K.P.; Lin, X.; Rahardja, S.; Pan, F. An adaptive edge-preserving artifacts removal filter for video post-processing. In Proceedings of the 2005 IEEE International Symposium on Circuits and Systems, Kobe, Japan, 23–26 May 2005; pp. 4939–4942. [Google Scholar]
- Vogel, C.R.; Chan, T.F.; Plemmons, R.J. Fast algorithms for phase-diversity-based blind deconvolution. Adaptive Optical System Technologies. Int. Soc. Opt. Photonics 1998, 3353, 994–1005. [Google Scholar]
- Cui, B.; Ma, X.; Xie, X.; Ren, G.; Ma, Y. Classification of visible and infrared hyperspectral images based on image segmentation and edge-preserving filtering. Infrared Phys. Technol. 2017, 81, 79–88. [Google Scholar] [CrossRef]
- Gong, B.; Schullcke, B.; Krueger-Ziolek, S.; Zhang, F.; Mueller-Lisse, U.; Moeller, K. Higher order total variation regularization for EIT reconstruction. Med. Biol. Eng. Comput. 2018, 56, 1367–1378. [Google Scholar] [CrossRef] [PubMed]
Noise | TV-MMIRGN | IRGN | ||||||
---|---|---|---|---|---|---|---|---|
SSIM | RE | SSIM | RE | |||||
1% | 0.211 | 0.201 | 0.985 | 0.015 | 0.341 | 0.33 | 0.94 | 0.037 |
2% | 0.221 | 0.305 | 0.971 | 0.016 | 0.35 | 0.34 | 0.93 | 0.041 |
5% | 0.232 | 0.307 | 0.961 | 0.017 | 0.37 | 0.39 | 0.91 | 0.042 |
Noise | TV-MMIRGN | IRGN | ||||||
---|---|---|---|---|---|---|---|---|
SSIM | RE | SSIM | RE | |||||
1% | 0.141 | 0.171 | 0.973 | 0.018 | 0.211 | 0.201 | 0.985 | 0.019 |
2% | 0.151 | 0.175 | 0.978 | 0.017 | 0.221 | 0.305 | 0.971 | 0.019 |
5% | 0.154 | 0.181 | 0.983 | 0.016 | 0.232 | 0.307 | 0.961 | 0.021 |
p | FTV-MMIRGN | ||
---|---|---|---|
SSIM | RE | ||
0.8 | 0.122 | 0.932 | 0.016 |
1 | 0.141 | 0.922 | 0.017 |
1.8 | 0.145 | 0.919 | 0.018 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alruwaili, E.; Li, J. Majorization–Minimization Total Variation Solution Methods for Electrical Impedance Tomography. Mathematics 2022, 10, 1469. https://doi.org/10.3390/math10091469
Alruwaili E, Li J. Majorization–Minimization Total Variation Solution Methods for Electrical Impedance Tomography. Mathematics. 2022; 10(9):1469. https://doi.org/10.3390/math10091469
Chicago/Turabian StyleAlruwaili, Eman, and Jing Li. 2022. "Majorization–Minimization Total Variation Solution Methods for Electrical Impedance Tomography" Mathematics 10, no. 9: 1469. https://doi.org/10.3390/math10091469
APA StyleAlruwaili, E., & Li, J. (2022). Majorization–Minimization Total Variation Solution Methods for Electrical Impedance Tomography. Mathematics, 10(9), 1469. https://doi.org/10.3390/math10091469